
NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE MATERIALS

EC 207: LOGIC CIRCUIT DESIGN

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in education.

MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in Engineering

and Frontier Technology and to impart quality education to mould technically competent citizens with moral

integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe discipline,

culture and spiritually, and to mould them in to technological giants, dedicated research scientists and

intellectual leaders of the country who can spread the beams of light and happiness among the poor and the

underprivileged.

ABOUT DEPARTMENT

 Established in: 2002

 Course offered : B.Tech in Electronics and Communication Engineering

M.Tech in VLSI

 Approved by AICTE New Delhi and Accredited by NAAC

 Affiliated to the A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Provide well versed, communicative Electronics Engineers with skills in Communication systems with

corporate and social relevance towards sustainable developments through quality education.

DEPARTMENT MISSION

1) Imparting Quality education by providing excellent teaching, learning environment.

2) Transforming and adopting students in this knowledgeable era, where the electronic gadgets (things)

are getting obsolete in short span.

3) To initiate multi-disciplinary activities to students at earliest and apply in their respective fields of

interest later.

4) Promoting leading edge Research & Development through collaboration with academia & industry.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1. To prepare students to excel in postgraduate programmes or to succeed in industry / technical

profession through global, rigorous education and prepare the students to practice and innovate recent fields in

the specified program/ industry environment.

PEO2. To provide students with a solid foundation in mathematical, Scientific and engineering fundamentals

required to solve engineering problems and to have strong practical knowledge required to design and test the

system.

PEO3. To train students with good scientific and engineering breadth so as to comprehend, analyze, design,

and create novel products and solutions for the real life problems.

PEO4. To provide student with an academic environment aware of excellence, effective communication skills,

leadership, multidisciplinary approach, written ethical codes and the life-long learning needed for a successful

professional career.

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,

and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural sciences,

and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design

system components or processes that meet the specified needs with appropriate consideration for the

public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of the

information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities with

an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the

professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions

in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable

development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of

the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in

diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write effective reports

and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering

and management principles and apply these to one’s own work, as a member and leader in a team,

to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Facility to apply the concepts of Electronics, Communications, Signal processing, VLSI, Control

systems etc., in the design and implementation of engineering systems.

PSO2: Facility to solve complex Electronics and communication Engineering problems, using latest

hardware and software tools, either independently or in team.optimization.

SYLLABUS

EC 207 LOGIC CIRCUIT DESIGN CATEGORY L T P CREDIT

PCC 3 1 0 4

Preamble: This course aims to impart the basic knowledge of logic circuits and enable
students to apply it to design a digital system.

Prerequisite: Basics of Electrical and Electronics Engineering

Course Outcomes: After the completion of the course the student will be able to

CO 1 Explain the elements of digital system abstractions such as digital representations of
information, digital logic and Boolean algebra

CO 2 Create an implementation of a combinational logic function described by a truth table

using and/or/inv gates/ muxes

CO 3 Compare different types of logic families with respect to performance and efficiency

CO 4 Design a sequential logic circuit using the basic building blocks like flip-flops

CO 5 Design and analyze combinational and sequential logic circuits through gate level
Verilog models.

Mapping of course outcomes with program outcomes

 PO
1

PO 2 PO 3 PO 4 PO 5 PO 6 PO 7 PO 8 PO 9 PO
10

PO
11

PO 12

CO 1 3 3

CO 2 3 3 3

CO 3 3 3

CO 4 3 3 3

CO 5 3 3 3 3

Assessment Pattern

Bloom’s Category Continuous Assessment Tests End Semester Examination

1 2

Remember 10 10 10

Understand 20 20 20

Apply 20 20 70

Analyse

Evaluate

Create

Mark distribution
Total Marks CIE ESE ESE Duration

150 50 100 3 hours

Continuous Internal Evaluation Pattern:

Attendance : 10 marks

Continuous Assessment Test (2 numbers) : 25 marks

Course project : 15 marks

Course Level Assessment Questions

Course Outcome 1 (CO1) : Number Systems and Codes

1. Consider the signed binary numbers A = 01000110 and B = 11010011 where B is in 2’s

complement form. Find the value of the following mathematical expression (i) A + B (ii)

A – B

2. Perform the following operations (i)D9CE16-CFDA16 (ii) 65758-57328

3. Convert decimal 6,514 to both BCD and ASCII codes. For ASCII, an even parity bit is to

be appended at the left.

Course Outcome 2 (CO2) : Boolean Postulates and combinational circuits

1. Design a magnitude comparator to compare two 2-bit numbers A = A1A0 and B = B1B0B

2. Simplify using K-map F(a,b,c,d) = Σ m (4,5,7,8,9,11,12,13,15)

3. Explain the operation of a 8x1 multiplexer and implement the following using an 8x1

multiplexer F(A, B, C, D) = Σ m (0, 1, 3, 5, 6, 7, 8, 9, 11, 13, 14)

Course Outcome 3 (CO3) : Logic families and its characteristics

1. Define the terms noise margin, propagation delay and power dissipation of logic families.

Compare TTL and CMOS logic families showing the values of above mentioned terms.

2. Draw the circuit and explain the operation of a TTL NAND gate

3. Compare TTL, CMOS logic families in terms of fan-in, fan-out and supply voltage

Course Outcome 4 (CO4) : Sequential Logic Circuits

1. Realize a T flip-flop using NAND gates and explain the operation with truth table,

excitation table and characteristic equation

2. Explain a MOD 6 asynchronous counter using JK Flip Flop

3. Draw the logic diagram of 3 bit PIPO shift register with LOAD/SHIFT control and

explain its working

Course Outcome 5 (CO5) : Logic Circuit Design using HDL

1. Design a 4-to-1 mux using gate level Verilog model.

2. Design a verilog model for a half adder circuit. Make a one bit full adder by connecting

two half adder models.

3. Compare concurrent signal assignment versus sequential signal assignment.

Syllabus

Module 1: Number Systems and Codes:

Binary and hexadecimal number systems; Methods of base conversions; Binary and

hexadecimal arithmetic; Representation of signed numbers; Fixed and floating point

numbers; Binary coded decimal codes; Gray codes; Excess 3 code. Alphanumeric codes:

ASCII. Basics of verilog -- basic language elements: identifiers, data objects, scalar data

types, operators.

Module 2: Boolean Postulates and Fundamental Gates

Boolean postulates and laws – Logic Functions and Gates De-Morgan’s Theorems, Principle

of Duality, Minimization of Boolean expressions, Sum of Products (SOP), Product of Sums

(POS), Canonical forms, Karnaugh map Minimization. Modeling in verilog, Implementation

of gates with simple verilog codes.

Module 3: Combinatorial and Arithmetic Circuits

Combinatorial Logic Systems - Comparators, Multiplexers, Demultiplexers, Encoder,

Decoder. Half and Full Adders, Subtractors, Serial and Parallel Adders, BCD Adder.

Modeling and simulation of combinatorial circuits with verilog codes at the gate level.

Module 4: Sequential Logic Circuits:

Building blocks like S-R, JK and Master-Slave JK FF, Edge triggered FF, Conversion of

Flipflops, Excitation table and characteristic equation. Implementation with verilog codes.

Ripple and Synchronous counters and implementation in verilog, Shift registers-SIPO, SISO,

PISO, PIPO. Shift Registers with parallel Load/Shift, Ring counter and Johnsons counter.

Asynchronous and Synchronous counter design, Mod N counter. Modeling and simulation of

flipflops and counters in verilog.

Module 5: Logic families and its characteristics:

TTL, ECL, CMOS - Electrical characteristics of logic gates – logic levels and noise margins,

fan-out, propagation delay, transition time, power consumption and power-delay product.

TTL inverter - circuit description and operation; CMOS inverter - circuit description and

operation; Structure and operations of TTL and CMOS gates; NAND in TTL and CMOS,

NAND and NOR in CMOS.

Text Books

1. Mano M.M., Ciletti M.D., “Digital Design”, Pearson India, 4th Edition. 2006

2. D.V. Hall, “Digital Circuits and Systems”, Tata McGraw Hill, 1989

3. S. Brown, Z. Vranesic, “Fundamentals of Digital Logic with Verilog Design”,

McGraw Hill

4. Samir Palnikar“Verilog HDL: A Guide to Digital Design and Syntheis”, Sunsoft

Press

5. R.P. Jain, “Modern digital Electronics”, Tata McGraw Hill, 4th edition, 2009

Reference Books

1. W.H. Gothmann, “Digital Electronics – An introduction to theory and practice”, PHI,

2
nd

 edition ,2006

2. Wakerly J.F., “Digital Design: Principles and Practices,” Pearson India, 4th 2008

.

3. A. Ananthakumar ,”Fundamentals of Digital Circuits”, Prentice Hall, 2nd edition,

2016

4. Fletcher, William I., An Engineering Approach to Digital Design, 1st Edition,

Prentice Hall India, 1980

Course Contents and Lecture Schedule

No Topic No. of Lectures

1 Number Systems and Codes:

1.1 Binary, octal and hexadecimal number systems; Methods of base

conversions;

2

1.2 Binary, octal and hexadecimal arithmetic; 1

1.3 Representation of signed numbers; Fixed and floating point numbers; 3

1.4 Binary coded decimal codes; Gray codes; Excess 3 code : 1

1.5 Error detection and correction codes - parity check codes and Hamming

code-Alphanumeric codes:ASCII

3

1.6 Verilog basic language elements: identifiers, data objects, scalar data types,

operators

2

2 Boolean Postulates and Fundamental Gates:

2.1 Boolean postulates and laws – Logic Functions and Gates, De-Morgan’s

Theorems, Principle of Duality

2

2.2 Minimization of Boolean expressions, Sum of Products (SOP), Product of

Sums (POS)

2

2.3 Canonical forms, Karnaugh map Minimization 1

2.4 Gate level modelling in Verilog: Basic gates, XOR using NAND and NOR 2

3 Combinatorial and Arithmetic Circuits

3.1 Combinatorial Logic Systems - Comparators, Multiplexers, Demultiplexers 2

3.2 Encoder, Decoder, Half and Full Adders, Subtractors, Serial and Parallel

Adders, BCD Adder

3

3.3 Gate level modelling combinational logic circuits in Verilog: half adder, full

adder, mux, demux, decoder, encoder

3

4 Sequential Logic Circuits:

4.1 Building blocks like S-R, JK and Master-Slave JK FF, Edge triggered FF 2

4.2 Conversion of Flipflops, Excitation table and characteristic equation. 1

4.3 Ripple and Synchronous counters, Shift registers-SIPO.SISO,PISO,PIPO 2

4.4 Ring counter and Johnsons counter, Asynchronous and Synchronous

counter design

3

4.5 Mod N counter, Random Sequence generator 1

4.6 Modelling sequential logic circuits in Verilog: flipflops, counters 2

5 Logic families and its characteristics:

5.1 TTL,ECL,CMOS- Electrical characteristics of logic gates – logic levels and

noise margins, fan-out, propagation delay, transition time, power

consumption and power-delay product.

3

5.2 TTL inverter - circuit description and operation 1

5.3 CMOS inverter - circuit description and operation 1

5.4 Structure and operations of TTL and CMOS gates; NAND in TTL, NAND

and NOR in CMOS.

2

ECE DEPARTMENT, NCERC PAMPADY

QUESTION BANK

Module-1
1. Perform inter-conversions of the following:

(a) AC0BFE16 to Binary, Octal and Decimal

(b) 775048 to Binary, Hexadecimal and Decimal

(c) 111012 to Octal, Hexadecimal and Decimal

(d) 7750410 to Binary, Hexadecimal and Octal

(e) 7750410 to BCD 8421and 2421

(f) 13710 to IEEE 754 Floating point number

2. Perform the subtraction of 6510 from 11010 using 2’s complement arithmetic on

8-bit signed numbers and validate your answer.

3. Verify the following Verilog relational statement:

Given A, B, C, and D are operands, show with steps,

Given that A=110, B=111, C=011000, D=111011

4. Show the floating-point representation of the decimal number 228, in version-1,

version-2 and IEEE 754 notation.

5. Represent decimal number 228 using excess-3 code.

6. Explain with the aid of examples the 8421, 2421, Excess-3 and Gray Code. State

which are weighted codes and unweighted codes.

7. Add the numbers FADE.BEE16 and BAD.FAB16 using hexadecimal arithmetic.

8. Explain the Data types in Verilog with examples.

9. Show the floating-point representation of the decimal number 232, in version-1,

version-2 and IEEE 754 notation.

10. Add the numbers DEAD.BEEF16 and 100011.1010012 using hex arithmetic.

11. Add the numbers 677.4328 and 333.1238 using octal arithmetic with the aid of

octal number line.

12. Explain the operation of each of the Verilog statements given below:

reg [7:0] b= 8'hA3;
{Carry, Sum} = a+ b;

integer signed a= 16'hBEEF;

ECE DEPARTMENT, NCERC PAMPADY

13. Show the floating-point representation of the decimal number 238, in version-

1, version-2 and IEEE 754 notation.

14. State what is Gray code? Draw the 4-bit Gray code representation. Provide the

applications.

15. Explain about use of Parity bits for error detection.

16. Perform the following additions using bcd arithmetic and validate your answer:

Add 12345 and 7234.

Module-2

1. State De Morgan’s Theorem and the rules. Apply the theorem as many times as needed to

obtain the complement of the following function in standard canonical form:

f ’ = (x’.y. z’ + x’.y’.z)’

2. Explain the Principle of Duality with the aid of examples.

3. State and prove the Involution Theorem and the Absorption Theorem.

4. State and prove the Associative Theorem and the Idempotent Theorem.

5. What is a Truth Table? With the aid of Truth Table prove the De Morgan’s Theorem.

6. Examine the different sets of Logic Gates with the aid of symbol, function and truth

table.

7. Compare and contrast Buffer gate and Invertor gate.

8. Decompose the Exclusive OR Function using universal gates with the aid of truth table,

logic diagram and modified logic diagram. Write Verilog program for the result.

9. Simplify the following Boolean expression using appropriate Karnaugh Map and provide

the logic implementation of the minimized expression using gates.

10. Construct the Verilog program module for the implementation in Q.9 and carefully

provide comments for each line of the code.

11. Explain the standard canonical forms for representing Boolean functions with the aid of

two examples each.

12. Explain the meaning of Literal, Minterm, Maxterm, Don’t Care term, SOP and POS.

Give examples to support your answers.

13. Simplify the following Boolean expression using appropriate Karnaugh Map and provide

the logic implementation of the minimized expression using universal gates with the aid

of De Morgan’s laws.

ECE DEPARTMENT, NCERC PAMPADY

14. Construct the Verilog program module for the above implementation in Q.13 and

carefully provide comments for each line of the code.

15. Decompose the Exclusive NOR Function using universal gates with the aid of truth table,

logic diagram and modified logic diagram. Write Verilog program for the result.

16. State De Morgan’s Theorem and the rules. Apply the theorem as many times as needed to

obtain the complement of the following function in standard canonical form:

f2’ = [(x.(y’. z’ + y.z)]’

17. Simplify the following Boolean expression using appropriate Karnaugh Map and provide

the logic implementation of the minimized expression using universal gates with the aid

of De Morgan’s laws.

18. Construct the Verilog program module for the above implementation in Q.17 and

carefully provide comments for each line of the code.

19. Write a well commented Verilog program for a circuit that has four input signals, x1, x2,

x3, and x4, and three output signals, f, g, and h, and implements the logic functions:

g = x1.x3 + x2.x4

h = (x1 + x3’)(x2’ + x4)

f = g + h

20. Obtain the complement of the following function in standard canonical form by applying

the De Morgan’s rule as many times as needed, as well as Principle of Duality:

21. Construct an XOR gate using NAND gates and perform gate level modeling using

Verilog.

22. Construct an XOR gate using NOR gates and perform gate level modeling using Verilog.

23. Repeat the above for XNOR Gate.

Module-3 (Part-1)

1. State what is meant by a Combinational circuit? Draw a generic block

diagram. Give four examples.

2. Analyze the Comparator circuits with the aid of graphic symbol and logic

implementations.

3. Define the Multiplexer function. Analyze the 4:1 MUX with the aid of

graphic symbol, truth table and logic implementation.

4. Implement the following Boolean function using an appropriate Multiplexer

after judicious manipulation of the original truth table.

ECE DEPARTMENT, NCERC PAMPADY

5. Give a practical application of Multiplexer circuits in Digital Electronics

and Communications or Entertainment. Try to specify a MUX of specific

size and provide the blueprint for your design.

6. State what is meant by a Decoder? Analyze the 2:4 Decoder with the aid of

graphic symbol, truth table and logic circuit.

7. Analyze how the basic Decoder can be made more efficient by means of

the Enable input. Draw the graphic symbol, truth table and logic circuit.

8. Define the Demultiplexer function. Analyze the 1:8 DEMUX with the aid of

graphic symbol, truth table and logic implementation. Give an application

of this function.

9. Implement the following Boolean function using an appropriate Multiplexer

after judicious manipulation of the original truth table.

f = xⓈ y Ⓢz ,

where Ⓢ → Ex-NOR function

10. State what is meant by a Magnitude Comparator? Analyze the 4-bit

Magnitude Comparator with the aid of graphic symbol, truth table and logic

circuit.

11. Analyze the 3:8 Decoder by means of the graphic symbol, truth table and

logic circuit. How would an extra enable input improve its robustness?

12. State what is meant by Encoder? Analyze the 4:2 Encoder by means of the

graphic symbol, truth table and logic circuit.

13. Investigate the Priority Encoder circuit as an improvement over plain ol’

Encoder with the aid of an example.

14. Analyze the Full Adder and Half Adder with the aid of truth table and logic

circuit diagram.

Module-3 (Part-2)

1. Describe the BCD Adder with the help of Logic Diagram and Functional

table of operation.

2. Analyze the Ripple Carry Adder with the help of Logic Diagram and

Functional table of operation.

ECE DEPARTMENT, NCERC PAMPADY

3. Describe the Binary Subtractor with overflow detection with the help of

Logic Diagram and operation. Also explain the detection of Overflow.

4. Describe the Priority Encoder with the help of Logic Diagram and

Functional table of operation

5. Analyze the 4-bit Magnitude Comparator with the help of logic expressions,

Logic Diagram and operational description.

6. Analyze the 16:1 Multiplexer using the 4:1 Multiplexer with logic diagram

and develop the Hierarchical Verilog Code for the 16:1 Multiplexer using

functional description of 4:1 Multiplexer code. Describe the steps in

arriving at the final code.

7. State what is meant by a Decoder? Analyze the 2:4 Decoder with the aid of

graphic symbol, truth table and logic circuit.

8. Analyze how the basic Decoder can be made more efficient by means of

the Enable input. Draw the graphic symbol, truth table and logic circuit.

9. Analyze the 2:4 Decoder with the aid of truth table and logic diagram and

develop the Verilog Code using case statement for the 2:4 Decoder

system. Describe the steps in arriving at the final code.

10. Use Verilog code to model a Full Adder system using Gate primitives, by

starting with the logic diagram of a Full Adder.

11. Use Verilog code to model a 4-bit Binary Adder system using Gate

primitives, by starting with the functional description of a Full Adder.

12. Use Verilog code to model a 4:1 MUX using Gate primitives, by starting

with the logic diagram of a Full Adder.

13. Use Verilog code to model a 16:1 MUX using Hierarchical coding, by

starting with the functional description of a 4:1 MUX.

14. Use Verilog code to model a 2:4 Decoder using Gate primitives, by starting

with the logic diagram.

15. Use Verilog code to model a 2:4 Decoder in an alternative way using case

statement along with Gate primitives, by starting with the logic diagram.

ECE DEPARTMENT, NCERC PAMPADY

Module-4

1. What is a Sequential system? With the aid of a block diagram, explain how

a sequential circuit can be constructed.

2. Analyze the S R Latch with the aid of Logic diagram and Functional table.

How does the addition of an enable input make the latch operate with clock

signal. What is the main drawback of this latch?

3. Analyze the Transparent Latch with the aid of Logic diagram and

Functional table. Represent the Graphic symbols for this latch.

4. Analyze the ET Flip Flop or MSD Flip Flop with the aid of Logic diagram

and Functional table. Represent the Graphic symbols for this flip flop.

5. Compare and Contrast Latch and Flip Flop. With diagrams, dissect the

structure of a periodic clock signal that caters for each of these.

6. Describe the J-K Flip Flop with the aid of Logic Diagram and Functional

table or Characteristic Table. Why is this called Universal Flip Flop?

7. Describe the realization of T Flip Flop and D Flip Flop from the Universal

Flip Flop, with clear reference to additional hardware requirements.

8. Draw the Characteristic Tables, write down the characteristic equations and

draw the Excitation Tables for the S-R, D, J-K and T flip flops.

9. Analyze the Binary Ripple Counter using D Flip Flops/ T Flip Flops and

describe the operation with the aid of Count table.

10. Configure a 4-bit Synchronous Counter using J-K Flip Flops and provide

the functional table, logic diagram, Count table and describe its operation.

Compare with Ripple Counter of same capacity.

11. Configure a 4-bit Parallel Access Shift Register using D Flip- Flops and

provide the functional table, logic diagram and describe its operation for the

various modes such as SISO, SIPO, PISO and PIPO.

12. Describe the Ring Counter and the Johnson Counter with the aid of Logic

Diagram, Functional table and details of operation.

13. Construct the hierarchical Verilog code for a 4-bit Shift Register with the

help of functional code of D Flip Flop. Comment on the suitability of the

code.

14. Construct the Verilog code for an Up Counter. Comment on the suitability

of the code.

ECE DEPARTMENT, NCERC PAMPADY

15. Analyze the Verilog construct of use in Sequential circuits and construct the

code for a D Flip Flop operating on the rising edge of the clock, with use of

Asynchronous reset input. Comment on the sensitivity list.

Module-5

1. Analyze the CMOS Logic Levels for Input voltage and Output voltages

with the aid of diagrams.

2. Analyze the TTL Logic Levels for Input voltage and Output voltages with

the aid of diagrams.

3. Justify the need for Noise Immunity in Digital Logic Systems.

4. Define Noise Margin. Explain the quantitative measures for Noise Margin

with the aid of diagrams of CMOS 5 V family.

5. Determine the High-level and LOW-level noise margins for CMOS and for

TTL using their logic level voltage ranges. Which is preferable for a noise

prone environment?

6. Analyze the Power Dissipation in logic circuits and obtain quantitative

measures of the same.

7. A certain gate draws 3 µA when its output is HIGH and 4.6 µA when its

output is LOW. What is its average power dissipation if Vcc is 5 V and the

gate is operated on a 50% duty cycle?

8. A certain IC gate has an ICCH = 1.5µA and ICCL = 2.8 µA. Determine the

average Power dissipation for 50% duty cycle operation if Vcc is 5 V.

9. Analyze the Binary Ripple Counter using D Flip Flops/ T Flip Flops and

describe the operation with the aid of Count table.

10. Compare and contrast the Power Dissipation in CMOS and TTL circuits.

11. Analyze the Propagation time Delay in Logic circuits and justify how the

Speed- Power product can be used as a benchmark.

12. Explain the Loading and Fan-out of the Gates. How does excessive loading

affect the Noise Margin of the gates?

13. Describe the CMOS Loading with the help of diagrams.

14. Describe the TTL Loading with the help of diagrams.

15. Analyze the CMOS Inverter circuit with the aid of Circuit Diagram and

Operational Diagrams.

ECE DEPARTMENT, NCERC PAMPADY

16. Analyze the TTL Inverter circuit with the aid of Circuit Diagram and

Operational Diagrams.

17. Analyze the TTL NAND Gate circuit with the aid of Circuit Diagram and

Operational Diagrams.

18. Analyze the CMOS NAND gate circuit with the aid of Circuit Diagram and

functional table and operation.

19. Analyze the CMOS NOR gate circuit with the aid of Circuit Diagram and

functional table and operation.

20. Explain the ECL Family of digital logic circuits.

21. Analyze the ECL NOR/OR gate with the aid of circuit diagram, operation

and transfer characteristic.

22. Explain the Noise margin of ECL circuits.

23. Compare and contrast the ECL, CMOS and TTL family of logic gates.

ECT 203 LOGIC CIRCUIT DESIGN MODULE I

Page 1 Module I

ECT 203 LOGIC CIRCUIT DESIGN

This course aims to impart the basic knowledge of Logic Circuits and enable students to

apply it to design a Digital System.

Module – I: Number Systems and Codes:

1.2 NUMBER SYSTEMS

Decimal Numbers

A decimal number such as 7,392 represents a quantity equal to 7 thousands, plus 3 hundreds,

plus 9 tens, plus 2 units. The thousands, hundreds, etc., are powers of 10 implied by the

position of the coefficients (symbols) in the number. To be more exact, 7,392 is a shorthand

notation for what should be written as:

7×10
3
 + 3×10

2
 + 9×10

1
 + 2×10

0

However, the convention is to write only the numeric coefficients and, from their position,

deduce the necessary powers of 10, with powers increasing from right to left. In general, a

number with a decimal point is represented by a series of coefficients:

a5a4a3a2a1a0. a−1a−2a−3

The coefficients aj are any of the 10 digits (0, 1, 2, . . . , 9), and the subscript value j gives the

place value and, hence, the power of 10 by which the coefficient must be multiplied.

ECT 203 LOGIC CIRCUIT DESIGN MODULE I

Page 2 Module I

0

0

0

1

So 7392 can be expanded with a3=7, a2=3, a1=9, and a0=2, and the other coefficients equal

to zero.

The radix of a number system determines the number of distinct values that can be used to

represent any arbitrary number. The decimal number system is said to be of base, or radix, 10

because it uses 10 digits and the coefficients are multiplied by powers of 10.

The radix point (e.g., the decimal point) distinguishes positive powers of 10 from negative

powers of 10.

Binary Numbers

The binary system is a different number system. The coefficients of the binary number

system have only two possible values: 0 and 1. So the radix is 2. Each coefficient aj is

multiplied by a power of the radix, for example, 2
j
, and the results are added to obtain the

decimal equivalent of the number. The radix point or the binary point distinguishes positive

powers of 2 from negative powers of 2.

For example, consider the binary number 11010.112

Find the decimal equivalent of the binary number 11010.112

11010.112 can be expanded as 1×2
4
 + 1×2

3
 + 0×2

2
 + 1×2

1
 + 0×2

0
 + 1×2

−1
 + 1×2

−2
 = 26.7510

So 26.7510 is the decimal equivalent of 11010.112

Given a decimal number, the binary equivalent can be found by repeatedly dividing by 2 and

extracting the remainder of the series of divisions, till the quotient becomes 1 and then

arrange the remainders from bottom to top.

For example, find the binary equivalent of 2410

2| 24

2| 12

2| 6

2| 3

1

 1 1 0 0 0

Therefore, 2410 ≡ 110002

Octal Numbers

The octal system is a different number system. The coefficients of the octal number system

have only eight possible values: 0, 1, 2, 3, 4, 5, 6 and 7. So the radix is 8. Each coefficient aj

is multiplied by a power of the radix, for example, 8
j
, and the results are added to obtain the

ECT 203 LOGIC CIRCUIT DESIGN MODULE I

Page 3 Module I

decimal equivalent of the number. The radix point or the octal point distinguishes positive

powers of 8 from negative powers of 8.

For example, consider the octal number 1004.028

Find the decimal equivalent of the octal number 1004.028

1004.028 can be expanded as 1×8
3
 + 0×8

2
 + 0×8

1
 + 4×8

0
 + 0×8

−1
 + 2×8

−2
 = 516.0312510

So 516.0312510 is the decimal equivalent of 1004.028

The conversion between octal numbers and binary numbers is much simpler and faster to

perform. Simply represent each octal digit as a combination of 3 binary digits or bits.

Similarly to convert binary numbers to octal, group sets of 3 bits from the lsb to the msb. If

you run out of bits add zeros from the msb.

Octal
Digit

Bits

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Example: Convert the octal number 77654318 to binary

msb lsb

77654318 = 111 111 110 101 100 011 001 ≡ 1111111101011000110012

Example: Convert the binary number 11000112 to octal

= 001 100 011

1 4 3 1438

Hexadecimal Numbers

The hexadecimal system is a different number system. The coefficients of the hex number

system have 16 possible values: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F. So the radix is

16. Each coefficient aj is multiplied by a power of the radix, for example, 16
j
, and the results

are added to obtain the decimal equivalent of the number. The radix point or the hex point

distinguishes positive powers of 16 from negative powers of 16.

ECT 203 LOGIC CIRCUIT DESIGN MODULE I

Page 4 Module I

For example, consider the hex number 100A16

Find the decimal equivalent of the hex number 100A16

100A16 can be expanded as 1×16
3
 + 0×16

2
 + 0×16

1
 + 10×16

0
 = 410610

So 410610 is the decimal equivalent of 100A16

The conversion between hex numbers and binary numbers is much simpler and faster to

perform. Simply represent each hex digit as a combination of 4 binary digits or bits. Similarly

to convert binary numbers to hex, group sets of 4 bits from the lsb to the msb. If you run out

of bits add zeros from the msb.

Hexadecimal
Digit

Bits

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

Example: Convert the HEX number ABCDE16 to binary

msb lsb

ABCDE16= 1010 1011 1100 1101 1110≡ 101010111100110111102

Example: Convert the binary number 11000112 to hex

= 0000 0110 0011

0 6 3 06316

ECT 203 LOGIC CIRCUIT DESIGN MODULE I

Page 5 Module I

More examples:

In these examples we have freely added zeroes on the left to make the total number of bits a

multiple of 3 or 4 as required.

ECT 203 LOGIC CIRCUIT DESIGN MODULE I

Page 6 Module I

ECT 203 LOGIC CIRCUIT DESIGN MODULE I

Page 7 Module I

ECT 203 LOGIC CIRCUIT DESIGN MODULE I

Page 8 Module I

ECT 203 LOGIC CIRCUIT DESIGN MODULE I

Page 9 Module I

ECT 203 LOGIC CIRCUIT DESIGN MODULE I

Page 10 Module I

Representation of Negative Numbers

Practical design of digital logic circuit to add/sub signed magnitude numbers is

complicated and is seldom undertaken.

One’s (1’s) Complement representation:

ECT 203 LOGIC CIRCUIT DESIGN MODULE I

Page 11 Module I

The main advantages of 1’s complement are its symmetry and ease of

implementation. But the adder design for 1’s complement numbers is not easy.

Also zero detectors in a 1’s complement system must check for both

representations of zero, or must always convert 11…11 to 00…00.

Two’s (2’s) Complement representation:

ECT 203 LOGIC CIRCUIT DESIGN MODULE I

Page 12 Module I

2’s Complement numbers support sign extension. Most modern computers

incorporate 2’s complement system for subtraction.

27-09-2020

1

• Code is defined as a set of n-bit strings in
which diff string patterns represent diff
numbers or other things.

• Code word is a particular combination of n-bit
string value.

• There may or may not be an arithmetic
relationship between the code word and the
thing it represents.

• A Code that uses n-bit strings need not
contain 2n valid code words.

Binary Coded Decimal Codes
• Binary numbers or bits are most suited for

internal computations of digital systems.
• But humans prefer decimal numbers (Why?)
• So, external interfaces of digital system may read

or display decimal numbers.
• Also some digital devices process decimal

numbers directly.
• So, to do this, a decimal digit is represented by a

string of bits.
• Different combinations of bit values in the string

represent different decimal digits.
• For example, using a 4-bit string, we represent

decimal 0 0000, 1 0001, 2 0010, and so on.

27-09-2020

2

(8421) BCD
• Binary Coded Decimal (BCD) encodes the digits 0 thro’

9 by their 4-bit unsigned bin representations 0000
thro’ 1001.

• The code words 1010 thro’ 1111 are not used.
• BCD is a weighted code as each decimal digit can be

obtained from its code word by putting a fixed weight
(23=8, 22=4, 21=2,20=1) for each code word bit.

• Place 2 BCD Digits in one 8-bit byte in Packed BCD
representation.

• So one byte represents values from 0 to 99 in packed
BCD repr as opposed to 0 to 255 for unsigned 8-bit
binary num.

• BCD numbers with any desired number of digits can be
got by using one byte for each two digits.

27-09-2020

3

Additions of BCD digits (Use correction of 6)

Negative BCD numbers

• Signed BCD numbers have one extra digit
position (4-bits) for the sign.

• Both the signed-magnitude and 10’s
complement representations are used.

• In signed-magnitude repr, the encoding of the
sign bit is arbitrary.

• In 10’s complement, + 0000, - 1001

27-09-2020

4

2421 Code

• This is also a weighted code having
weights 2,4,2 and 1 for the code word bits
from msb.

• The advantage of this code is that it is self-
complementing, i.e., the code word for
the 9’s complement can be got by flipping
the individual bits of the code word.

27-09-2020

5

Excess-3 Code

• This is an unweighted code.

• The code word for a decimal digit is got by
adding 00112 to the corresponding BCD code
word.

• As the code words follow a standard binary
counting sequence, standard binary counters
can easily be made to count in excess-3 code.

• This is also a self-complementing code.

27-09-2020

6

Represent 4-bit Gray Code…

Gray Code

• A Digital Code in which there is only one bit
changes between a pair of successive code
words is called a Gray Code.

• Eg. 3-bit Gray code

• Is Gray Code a

Weighted code?

27-09-2020

7

ASCII Character Code

• An alphanumeric character code is a set of code
words that encodes the 10 decimal digits, the
26 letters of the alphabet, and a number of
special characters.

• Such a set contains between 64 and 128
elements if both uppercase and lowercase letters
are included, we need a binary code word of
seven bits. (Why? using 7 bit can repr
[0 – 27-1] [0 to 127] = 128 combinations)

• The standard binary code for the alphanumeric
characters is the American Standard Code for
Information Interchange (ASCII), which uses 7
bits to code 128 characters.

• The Gray code is used in applications where
normal sequence of binary number generated
by hardware produce an error during
transition from one number to the next.

• If binary numbers are used, a change from
0111 to 1000 may produce an intermediate
error number 1001, if lsb takes longer to
change than do the values of the other three
bits.

• This could have serious issues for the
machine.

• The Gray code eliminates this problem, since
only one bit changes its value during any
transition between two numbers.

27-09-2020

8

27-09-2020

9

Parity bit –Error Detection
• Insert an extra bit in leftmost position of code to produce an even

no: of 1’s in character for even parity or an odd number of 1’s in
character for odd parity.

• In general, one or the other parity is used, with even parity being
more common.

• Parity bit is helpful in detecting errors during transmission of info
from one location to another.

• This function is handled by generating an even parity bit at the
sending end for each character.

• The eight-bit characters that include parity bits are transmitted to
their destination.

• The parity of each character is then checked at the receiving end.
• If the parity of the received character is not even, then at least one

bit has changed value during the transmission.
• This method detects one, three, or any odd combination of errors in

each character that is transmitted.
• An even combination of errors, however, goes undetected, and

additional error detection codes may be needed to take care of that
possibility.

Error-Detecting Code

• To detect errors in data communication and
processing, an eighth bit is sometimes added
to the ASCII character to indicate its parity.

• A parity bit is an extra bit included with a
message to make the total number of 1’s
either even or odd.

• Consider the following two characters and
their even and odd parity:

27-09-2020

10

Basics of Error Correction
• The sending end will respond to an NAK by

transmitting the message again until the
correct parity is received.

• If, after a number of attempts, the
transmission is still in error, a message can be
sent to the operator to check for malfunctions
in the transmission path.

Basics of Error Correction
• After an error is detected ,need to correct it!

• Make request for retransmission of the
message on the assumption that the error was
random and will not occur again.

• If the receiver detects a parity error, it sends
back the ASCII NAK (negative acknowledge)
control character consisting of an even parity
eight bits 10010101.

• If no error is detected, the receiver sends back
an ACK (acknowledge) control character,
namely, 00000110.

27-09-2020

11

• In 1990, Gateway Design Automation Inc. was
acquired by Cadence Design System, which is now
one of the biggest suppliers of electronic design
technologies and engineering services in the
electronic design automation (EDA) industry.

• Cadence recognized the value of Verilog, and realized
that if Verilog remained as a closed language, the
pressure of standardization would eventually drive
people to shift to VHDL.

• So in 1991 the Open Verilog International (OVI) (now
known as Accellera) was organized by Cadence and
the documentation of Verilog was transferred to
public domain under the name of OVI.

• It was later submitted to IEEE and became IEEE
standard 1364-1995, commonly referred as Verilog-
95.

Verilog of the 20th Century ….

Introduction to Verilog
programming…

• Verilog HDL(Hardware Description Language)
was invented by Phil Moorby and Prabhu Goel
around 1984.

• It served as a proprietary hardware modeling
language owned by Gateway Design
Automation Inc. ...

• In 2001, extensions to Verilog-95 were
submitted back to IEEE and became IEEE
standard 1364-2001, known as Verilog-2001.

27-09-2020

12

Comments
• A single line comment starts with // and tells

Verilog compiler to treat everything after this
point to the end of the line as a comment.

• A multiple-line comment starts with /* and
ends with */ and cannot be nested.

• In 2001, extensions to Verilog-95 were submitted back to IEEE and became IEEE
standard 1364-2001, known as Verilog-2001.

• The extensions covered some deficiencies that users had found in Verilog-95.

• One of the most significant upgrades was that signed variables (in 2’s
complement) became supported.

• Verilog-2001 is now dominant edition of Verilog supported by most design tools.

• In 2005, Verilog-2005 (IEEE Standard 1364-2005) was published with minor
corrections and modifications.

• Also in 2005 System Verilog, a superset of Verilog-2005, with many new features
and capabilities to aid design verification, was published.

• As of 2009, System Verilog and Verilog language standards were merged into
System Verilog 2009 (IEEE Standard 1800-2009), which is one of the most
popular languages for IC design and verification today.

• Xilinx® Vivado Design Suite, released in 2013, can support System Verilog for
FPGA design and verification.

• At our famed worthy NCERC Labs, we are devout followers of the same…

Verilog of the 21st Century ….

27-09-2020

13

The variable data type

• The variable data type is an abstraction of a data
storage element.

• A variable shall store a value from one
assignment to the next.

• An assignment statement in a procedure acts as a
trigger that changes the value in the data storage
element.

• A very popular variable data type is the reg.
• There are also several other predefined data

types that are part of variables.
• Examples are reg, time, integer, real, and real-

time.

Data Types
• Verilog has two main groups of data types: the variable data

type and the net data type.
• These two groups differ in the way that they are assigned

and hold values.
• They also represent different hardware structures.
• The net data types can represent physical connections

between structural entities, such as gates.
• Generally, it does not store values.
• Instead, its value is determined by the values of its drivers,

such as a continuous assignment or a gate.
• A very popular net data type is the wire.
• There are also several other predefined data types that are

part of nets.
• Examples are tri (for tri-state), wand (for wired and), wor

(for wired or).

27-09-2020

14

IEEE Standard
• In previous versions of the Verilog standard, the

term register was used to encompass the reg,
integer, time, real, and realtime types.

• But starting with the 2005 IEEE 1364 Standard,
that term is no longer used as a Verilog data type.

• A net or reg declaration without a range
specification shall be considered 1 bit wide and is
known as a scalar.

• Multiple bit net and reg data types shall be
declared by specifying a range, which is known as
a vector.

Predefined Types

27-09-2020

15

Verilog Operators

27-09-2020

16

Precedence of operators
• When parentheses are not used, operators in

class 1 have highest precedence and are
applied first, followed by class 2, then class 3,
and so forth.

• Class 13 operators have lowest precedence
and are applied last.

• Operators in the same class have the same
precedence and are applied from left to right
in an expression.

27-09-2020

17

• Precedence order can be changed by using parentheses.
• The { } operator can be used to concatenate two vectors

(or an element and a vector, or two elements) to form a
longer vector.

• For example, {010, 1} is 0101 and {“ABC”,
“DEF”} is “ABCDEF”

• In expression where A, B, C, and D are vectors:
• ({A, ~B} | C >> 2 & D) == 110010

• Relational expression performing an equality test.
• It is not an assignment statement.
• To evaluate the expression inside (), operator

precedence shows highest precedence for three
operators in order: >>, &, |

• In order to evaluate | , one of the operands of | has to
be obtained by concatenation, which forces expression
inside concatenate to be evaluated and operators ~, { },
are applied before the | can be evaluated.

27-09-2020

18

• For example, {Carry, Sum} = A + B;

• It adds A and B and the result goes into Sum and
Carry.

• The most significant bit (msb) of the result is
assigned to Carry.

• Shift operators can be applied to signed and
unsigned registers.

• One can declare a register to be signed/unsigned in
the following manner:

reg signed [7:0] A = 8'hA5;//signed register A

// number 0xA5 is unsigned, size (8) but repr in A in signed form msb =1

reg [7:0] B = 8'hA5; //unsigned register B

// number 0xA5 is unsigned, size (8) repr in B in unsigned form

• The 'h indicates that the value is hex.

• The result of applying a relational operator is
always a Boolean (FALSE or TRUE).

• Equals (==) and not equals (!=) can be applied
to almost any type.

• The other relational operators can be applied
to many numeric as well as to some array
types.

• For example, if A = 5 B =4 and C =3, the
expression (A >= B) && (B <= C)
evaluates to FALSE.

• It is legal to use concatenate operator on the
left side of the assignment.

27-09-2020

19

• If the register is unsigned, arithmetic and logic
shifts do same operation.

• The following example illustrates the
difference between signed and unsigned shifts
on signed and unsigned data…

27-09-2020

20

• The + and - operators can be applied to any types,
including integer or real numeric operands.

• When types are mixed, the expression self-
evaluates to a type according to the types of the
operands.

• If a and b are 16 bits each, (a + b) will evaluate to
16 bits.

• However, (a + b + 0) will evaluate to integer.

• If any operand is real, the result is real.

• If any operand is unsigned, the result is
unsigned, regardless of the operator.

• If A is declared as integer as in:
integer signed A = 8'hA5;

• A >>> 4 yields 00001010 (shift right signed by 4, but
integer type is 32 bits and so bits fill up with 0’s)

• But if A is initialized to 8'shA5 as in:
• integer A = 8'shA5;

• A >>> 4 yields 11111010 (shift right signed by 4, A’s
sign bit is 1).

• However, in reg declarations, if a signed register is
desired, it should be explicitly mentioned.

• For instance,
reg [7:0] A = 8'shA5

• does not make the register signed. It should be declared
as:
reg signed [7:0] A =8'hA5

27-09-2020

21

Keywords

• When expressions are evaluated, if the operands are of
unequal bit lengths and if one or both operands are
unsigned, the smaller operand shall be zero-extended to
the size of the larger operand.

• If both operands are signed, the smaller operand shall
be sign-extended to the size of the larger operand.

• If constants need to be extended, signed constants are
sign-extended
extended.

and unsigned constants are zero-

• The * and / operators perform multiplication and division
on integer or floating point operands.

• The ** operator raises an integer or floating-point
number to an integer power.

• The % (modulus) operator calculates the remainder for
integer operands.

27-09-2020

22

ARITHMETIC WITH FIXED-POINT NUMBERS

• Compute 0.75 + −0.625 using 8-bit fixed-point numbers.

• Fixed-point number systems are commonly used for

banking and financial applications that require precision
but not a large range.

Fixed-Point Number Systems
• Fixed-point notation has an implied binary point

between the integer and fraction bits.
• For ex, a fixed-point number with four integer bits

and four fraction bits is shown:

• Signed fixed-point numbers can use either two’s

complement or sign/magnitude notation.

27-09-2020

23

• For example, the number 4.1 × 103 is the
decimal scientific notation for 4100.

• It has a mantissa of 4.1, a base of 10, and an
exponent of 3.

• The decimal point floats to the position right
after the most significant digit.

• Floating-point numbers are base 2 with a
binary mantissa.

• 32 bits are used to represent 1 sign bit, 8
exponent bits, and 23 mantissa bits.

Floating-Point Number Systems
• Floating-point numbers are analogous to

scientific notation.

• They remove constraint of constant number of
integer and fractional bits, allowing the
representation of very large and very small
numbers.

• Like scientific notation, floating-point numbers
have a sign, mantissa (M), base (B), and
exponent (E).

27-09-2020

24

Floating-point version 2
• In binary floating-point, the first bit of the mantissa (to

the left of the binary point) is always 1 and therefore
need not be stored.

• It is called the implicit leading one.
• The modified floating-point representation

• of 22810 = 111001002 × 20 = 1.110012 × 27.
• The implicit leading one is not included in the 23-bit

mantissa for efficiency.
• Only the fraction bits are stored.
• This frees up an extra bit for useful data.

32-BIT FLOATING-POINT NUMBERS

• Show the floating-point representation of the
decimal number 228.

• Sol:

• First convert the decimal number into binary:
22810=111001002=1.110012 × 27.

27-09-2020

25

Special Cases: 0, ±∞, and NaN
• The IEEE floating-point standard has special cases

to represent numbers such as zero, infinity, and
illegal results.

• For example, representing the number zero is
problematic in floating-point notation because of
the implicit leading one.

• Special codes with exponents of all 0’s or all l’s
are reserved for these special cases.

IEEE 754 floating point notation
• Need to make one final modification to the exponent field.
• The exponent needs to represent both positive and

negative exponents.
• To do so, floating- point uses a biased exponent, which is

the original exponent plus a constant bias.
• 32-bit floating-point uses a bias of 127.
• For example, for the exponent 7, the biased exponent is 7 +

127 = 134 = 100001102.
• For the exponent −4, the biased exponent is: −4 + 127 =

123 = 011110112.

27-09-2020

1

Boolean Algebra
• In 1849 George Boole published a scheme for the

algebraic description of processes involved in
logical thought and reasoning.

• This scheme and its further refinements became
known as Boolean algebra.

• It was almost 100 years later that this Algebra
found application in the Engineering sense.

• In the late 1930s, Claude Shannon showed that
Boolean Algebra provides an effective means of
describing circuits built with switches.

• The Algebra can be used to describe logic circuits.

• A Boolean variable can take value of either logic 0
or logic 1.

Boolean Postulates and

Fundamental Gates

Module - 2

ECT 203

27-09-2020

2

Postulates and Theorems of
Boolean Algebra

George Boole

 Postulate/Theorem Rule -a Rule-b

 Postulate 2 x + 0 = x x .1 = x

 Postulate 5 x + x’ = 1 x . x' = 0

 Theorem 1 x + x = x x . x = x

 Theorem 2 x + 1 = 1 x . 0 = 0

 Theorem 3, Involution (x’)’ = x

 Postulate 3, Commutative x + y = y + x x.y = y.x

 Theorem 4, Associative x + (y + z) = (x + y) + z x.(y.z) = (x.y).z

 Postulate 4, Distributive x.(y + z) = x.y + x.z x + y.z = (x + y).(x + z)

 Theorem 5, DeMorgan (x + y)’ = x’. y’ (x.y)’ = x’ + y’

 Theorem 6, Absorption x + x.y = x x.(x + y) = x

Principle of Duality
George Boole

• This important property of Boolean algebra is
called the Principle of Duality and states that
every algebraic expression deducible from the
postulates of Boolean algebra remains valid if the
operators and identity elements are
interchanged.

• In a two-valued Boolean algebra, the identity
elements and elements of set are same: 1 and 0.

• The duality principle has many applications.

• If the dual of an algebraic expression is desired,
we simply interchange OR and AND operators
and replace 1’s by 0’s and 0’s by 1’s.

27-09-2020

3

D u a l

• Note that theorem 1(b) is the dual of theorem
1(a) and that each step of the proof in part (b)
is the dual of its counterpart in part (a).

• Any dual theorem can be similarly derived

from the proof of its corresponding theorem.

P r o o f o f t h e T h e o r e m s

27-09-2020

4

• Therefore, since the complement is unique,
we have (x’)’ = x.

• The theorems involving two or three variables
may be proven algebraically from postulates
and theorems that have already been proven.

27-09-2020

5

Tr u t h Ta b l e

• The theorems of Boolean algebra can be
proven by means of truth tables.

• In truth tables, both sides of the relation are
checked to see whether they yield identical
results for all possible combinations of the
variables involved.

27-09-2020

6

P r o o f o f A b s o r p t i o n T h e o r e m

• The following truth table verifies the
absorption theorem:

P r o o f o f D e M o r g a n ’ s T h e o r e m

27 June 1806 – 18 March 1871

Theorem 6, Absorption x + x.y = x x.(x + y) = x

Theorem 5, DeMorgan (x + y)’ = x’. y’ Rule – a

27-09-2020

7

• A buffer produces the transfer function, but does not
produce a logic operation, since the binary value of the
output is equal to the binary value of the input.

• This circuit is used for power amplification of the signal

and is equivalent to two inverters connected in cascade.

27-09-2020

8

27-09-2020

9

F1 = x + y’.z

Boolean Function

• F1 = x + y’.z

• The function F1 is equal to 1 if x is equal to 1
or if both y’ and z are equal to 1.

• F1 is equal to 0 otherwise.

• The complement operation y = 1, y’ = 0.

• F1 = 1 if x = 1 or if y = 0 and z = 1.

27-09-2020

10

Now consider the possible simplification of the function
by applying some of the identities of Boolean algebra:

F2 = x’.y’.z + x’.y.z + x.y’

27-09-2020

11

27-09-2020

12

CANONICAL AND STANDARD FORMS
• A binary variable may appear either in its normal

form (x) or in its complement form (x’).

• Now consider two binary variables x and y
combined with an AND operation.

• Since each variable may appear in either form,
there are four possible combinations: x’.y’, x’.y,
x.y’ and x.y

• Each of these four AND terms is called a Minterm,
or a standard product.

• In a similar manner, n variables can be combined
to form 2n Minterms.

27-09-2020

13

• In a similar fashion, n variables forming an OR
term, provide 2n possible combinations, called
Maxterms, or standard sums.

• Each Maxterm is obtained from an OR term of the
n variables, with each variable being unprimed if
the corresponding bit is a 0 and primed if a 1.

• Each Maxterm is the complement of its
corresponding minterm and vice versa.

• A Boolean function can be expressed algebraically
from a given truth table by forming a minterm for
each combination of the variables that produces
a 1 in the function and then taking the OR of all
those terms.

27-09-2020

14

Example – Write the Boolean Function for this Truth Table

• Any Boolean function can be expressed as a Sum of
Minterms (with “Sum” meaning the ORing of terms).

• This is called Sum of Products (SOP)

• Consider
function.

• It may be read from the truth table by forming

the complement of a Boolean

a minterm for each combination that
produces a 0 in the function and then ORing
those terms.

• The complement of f1 is read as:

• Take the complement of f1’, to obtain the
function f1: (Use DeMorgan’s rule)

27-09-2020

15

Standard Form - SOP
• The sum of products is a Boolean expression

containing AND terms, called product terms, with
one or more literals each.

• The sum denotes the ORing of these terms.
• An example of a function expressed as a sum of

products is :
• The expression has three product terms, with

one, two, and three literals.
• Their sum is, in effect, an OR operation.
• The logic diagram of a sum-of-products

expression consists of a group of AND gates
followed by a single OR gate.

• Any Boolean function can be expressed as a
product of Maxterms (with “product” meaning
the ANDing of terms). Product of Sums (POS).

• The procedure for obtaining the product of
Maxterms directly from the truth table is as
follows:

• Form a Maxterm for each combination of the
variables that produces a 0 in the function, and
then form the AND of all those Maxterms.

• Boolean functions expressed as a sum of
Minterms or product of Maxterms are said to be
in Canonical form.

27-09-2020

16

Standard Form - POS
• A product of sums is a Boolean expression

containing OR terms, called sum terms.
• Each term may have any number of literals.
• The product denotes the ANDing of these terms.
• An example of a function expressed as a product

of sums is:
• This expression has three sum terms, with one,

two, and three literals.
• The product is an AND operation.
• The gate structure of the POS expression consists

of a group of OR gates for the sum terms
followed by an AND gate.

Two-level implementation

27-09-2020

17

Karnaugh Map-Minimization of
Boolean Functions

Maurice Karnaugh

• The Karnaugh map (KM or K-map) is a

method of simplifying Boolean expressions

introduced by Maurice Karnaugh in 1953.

• Karnaugh maps are used to simplify real-world
logic requirements so that they can be
implemented using a minimum number of
physical logic gates.

Two-level implementation

27-09-2020

18

Mapping of SOP expressions
• Each sum term in the standard SOP expression is called a

Minterm.
• A function in two variables (A, B) has four possible Minterms,

A’B’, A’B, AB’, AB

• They are represented as m0, m1, m2, and m3.
• The lowercase letter m stands for Minterm and its subscript

denotes the decimal designation of that Minterm.
• Treat the non-complemented variable as a 1 and the

complemented variable as a 0 and put them side by side for
reading the decimal equivalent of the binary number so
formed.

• For mapping a SOP expression on to the K-map, 1s are placed
in the squares corresponding to the Minterms which are
presented in the expression.

Two-variable Karnaugh(K)-map
Mapping of SOP Expressions

The minterms of a
two-variable k-map

The mapping of the expressions =Σ m (0,2,3) is:

27-09-2020

19

Minimizations of SOP expressions

f1=Σ m (0,1) f2=Σ m (0,2) f3=Σ m (1,3)

f1= A’ f2= B’ f3= B

f4=Σ m (2,4) f5=Σ m (0,1,2,3)
f6=Σ m (0,1,3)

A
f 6

B

f4= A f5= 1 f6= A’+B

Draw the K-Map the expressions F= A’B+AB’

27-09-2020

20

The possible Maxterm groupings in a two-variable K-map

Mapping of POS expressions
• Each sum term in the standard POS expression is called a

Maxterm.
• A function in two variables (A, B) has four possible Maxterms,

(A’+B’),(A’+B),(A+B’),(A+B)

• They are represented as M0, M1, M2, and M3.
• The uppercase letter M stands for Maxterm and its subscript

denotes the decimal designation of that Maxterm.
• Treat the non-complemented variable as a 0 and the

complemented variable as a 1 and put them side by side for
reading the decimal equivalent of the binary number so
formed.

• For mapping a POS expression on to the K-map, 0s are placed
in the squares corresponding to the Maxterms which are
presented in the expression.

27-09-2020

21

Three-variable K-map

Minimization of POS Expressions

Ex: Reduce the expression f=(A+B).(A+B‘).(A‘+B‘) using mapping.

f=A.B‘

27-09-2020

22

: Map the expression

Minimization of SOP expressions

Example: Map the expression

The corresponding k-map is :

Example

27-09-2020

23

Minimize the Boolean expr

Use 3-var K-Map
Mapping

Grouping and reduction

Minimized Boolean expr

AND -OR-Logic

NAND logic

27-09-2020

24

Minimize the Boolean expr

Use 4-var K-Map

Mapping

1

0

Four-variable K-map

1

1

27-09-2020

25

Structural Specification of Logic Gates
• Verilog includes a set of Gate-level Primitives

that correspond to commonly-used logic gates.

• A gate is represented by indicating its
functional name, output, and inputs.

• For example, a two-input AND gate, with
output y and inputs x1 and x2, is denoted as:

and (y, x1, x2);

• A four-input OR gate is specified as:

or (y, x1, x2, x3, x4);

Grouping and reduction

1

0

Minimized Boolean expr

27-09-2020

26

Example code: Multiplexer circuit

Logic Circuit

Verilog Code

• The keywords nand and nor are used to define
the NAND and NOR gates in the same way.

• The NOT gate given by:

not (y, x);// implements y = x’.

• A logic circuit is specified in the form of a
module that contains the statements that
define the circuit.

• A module has inputs and outputs, which are
referred to as its ports.

• The word port is a commonly-used term that
refers to an input or output connection to an
electronic circuit.

27-09-2020

27

Second example of Verilog code

• It defines a circuit that has four input signals,
x1, x2, x3, and x4, and three output
signals, f, g, and h.

• It implements the logic functions:

g = x1.x3 + x2.x4

h = (x1 + x3’)(x2’ + x4)

f = g + h

• The first statement gives the module a name,
example1, and indicates that there are four port
signals.

• The next two statements declare that x1, x2, and s are
to be treated as input signals, while f is the output.

• The actual structure of the circuit is specified in the
four statements that follow.

• The NOT gate gives k = s’

• The AND gates produce g = s’.x1 and h = s.x2.
• The outputs of AND gates are combined in the OR gate

to form: f = g+h

= s’.x1+s.x2

• The module ends with the endmodule statement.

27-09-2020

28

27-09-2020

29

Verilog code for EX-OR Gate

module xor (x, y, f);

input x, y;

output f;

not (j, x);

not (k, x);

nand (g, x, j);

nand (h, y, k);

nand (f, g, h);

endmodule

EX-OR Gate using NAND Gate

f f

08-Oct-20

1

Combinational Logic Systems
• A Combinational circuit consists of logic gates

whose outputs at any time are determined from
only the present combination of inputs.

• A Combinational circuit performs an operation
that can be specified logically by a set of Boolean
functions.

• A Combinational circuit consists of an inter
connection of logic gates.

• Combinational logic gates react to the values of
the signals at their inputs and produce the value
of the output signal.

• Transforms binary information from the given
input data to a required output data.

Combinatorial and Arithmetic

Circuits

ECT 203 Module -3

08-Oct-20

2

• The n input binary variables come from an

external source.

• the m output variables are produced by the
internal combinational logic circuit and go to an
external destination.

• Each input and output variable exists physically as
an analog signal whose values are interpreted to
be a binary signal that represents logic 1 and logic
0.

• For n input variables, there are 2n possible
combinations of the binary inputs.

• For each possible input combination, there is one
possible value for each output variable.

Block Diagram of a Combinational Circuit

08-Oct-20

3

Comparators

• A Comparator determines whether two binary
numbers are equal or if one is greater or less than
the other.

• A Comparator receives two N-bit binary numbers,
A and B.

• There are two common types of Comparators.

• They are Equality Comparator and Magnitude
Comparator.

• An equality comparator produces a single output
indicating whether A is equal to B (A== B).

• A magnitude comparator produces one or more
outputs indicating the relative values of A and B.

• A combinational circuit can be specified with a truth
table that lists the output values for each combination
of input variables.

• A combinational circuit also can be described by m
Boolean functions, one for each output variable.

• Each output function is expressed in terms of the n
input variables.

• The most important standard combinational circuits,
such as multiplexers, adders, subtractors, comparators,
demultiplexers, decoders, encoders will be studied.

• These components are available in integrated circuits
as medium-scale integration (MSI) circuits.

• They are also used as standard cells in complex very
large scale integrated (VLSI) circuits such as
Application-Specific Integrated Circuits (ASICs).

• The standard cell functions are interconnected within
the VLSI circuit in the same way that they are used in
multiple-IC MSI design.

08-Oct-20

4

• The equality comparator is the simpler piece
of hardware.

• The diagram shows
of

the symbol and
implementation
comparator.

• It first checks

a 4-bit equality

to determine whether the
corresponding bits in each column of A and B
are equal, using XNOR gates.

• The numbers are equal if all of the columns
are equal.

Equality Comparator

4-bit equality comparator: (a) symbol, (b) implementation

08-Oct-20

5

N-bit Magnitude Comparator

Magnitude comparison

• Magnitude comparison is usually done by
computing A- B and looking at the sign (most
significant bit) of the result, as shown in
diagram.

• If the result is negative (i.e., the sign bit is 1),
then A is less than B.

• Otherwise A is greater than or equal to B.

08-Oct-20

6

2-to-1 Multiplexer

Multiplexers

• A multiplexer circuit has a number of data
inputs, one or more select inputs, and one
output.

• It passes the signal value on one of the data
inputs to the output.

• The data input is selected by the values of the
select inputs.

08-Oct-20

7

4-to-1 Multiplexer
• This is a larger multiplexer with four data

inputs, w0, . . . ,w3, and two select inputs, s1

and s0.
• As shown in the truth table in part (b) of the

figure, the two-bit number represented by s1s0
selects one of the data inputs as the output of
the multiplexer.

• A sum-of-products implementation of the
4-to-1 multiplexer appears in part (c).

• It realizes the multiplexer function

• Part (a) gives the symbol commonly used.

• The select input, s, chooses as the output of
the multiplexer either input w0 or w1.

• The multiplexer’s functionality can be
described in the form of a truth table as
shown in part (b) of the figure.

• Part(c) gives a sum-of-products
implementation of the 2-to-1 multiplexer.

08-Oct-20

8

4-to-1 Multiplexer

4-to-1 Multiplexer

08-Oct-20

9

Using 2-to-1 multiplexers to build a 4-to-1 multiplexer.

• It is possible to build larger multiplexers using
the same approach.

• Usually, the number of data inputs, n, is an
integer power of two.

• A multiplexer that has n data inputs, w0, . . .

,wn−1, requires log2n select inputs.
• Larger multiplexers can also be constructed

from smaller multiplexers.

• For example, the 4-to-1 multiplexer can be
built using three 2-to-1 multiplexers

• A 16-to-1 multiplexer is constructed with five
4-to-1 multiplexers.

08-Oct-20

10

Synthesis of Logic Functions Using
Multiplexers

• Multiplexers can also be used in a more
general way to synthesize logic functions.

• Example: 1: Implement the Ex-OR function
using multiplexer.

16-to-1 multiplexer.

08-Oct-20

11

• A better implementation can be got by
modifying truth table as shown in Figure b,
which allows f to be implemented by a single
2-to-1 multiplexer.

• One of the input signals, w1, is chosen as
select input of the 2-to-1 multiplexer.

• The truth table is redrawn to indicate the
value of f for each value of w1.

• When w1 = 0, f has the same value as input
w2, and when w1 = 1, f has the value of w2’.

• Truth table defines function f = w1 ⊕ w2.

• Implement with a 4-to-1 multiplexer where
values of f in each row of truth table are
connected to multiplexer data inputs.

• The multiplexer select inputs are w1 and w2.

• Thus for each valuation of w1w2, output f is
equal to function value in corresponding row
of truth table.

• The above implementation is straightforward,
but it is not very efficient.

08-Oct-20

12

Example: 2
Implement the truth table using appropriate Multiplexer.

Two-input XOR implemented with 2-to-1 multiplexer

08-Oct-20

13

Example: 3
Implement the function f using appropriate Multiplexer.

f = w1 ⊕ w2 ⊕ w3

Implementation with 4-to-1 multiplexer

08-Oct-20

14

Three-input XOR implemented with 2-to-1 multiplexers

• The function can be implemented using 2-to-1
multiplexers.

• When w1 = 0, f is equal to XOR of w2 and w3,
and when w1 = 1, f is the XNOR of w2 and w3.

• Part (b) gives a corresponding circuit.

• The left multiplexer in the circuit produces

w2 ⊕ w3

• The right multiplexer uses the value of w1 to

select either w2 ⊕ w3 or its complement.

• This circuit can be got directly by writing the
function as :

f = (w2 ⊕ w3) ⊕ w1

08-Oct-20

15

Three-input XOR implemented with a 4-to-1 multiplexer

Alternative implementation
f = w1 ⊕ w2 ⊕ w3

08-Oct-20

16

4-bit Magnitude Comparator
• Consider two numbers, A and B , with four digits each.

• Write the coefficients of the numbers in descending order
of significance:

• The two numbers are equal if all pairs of significant digits

are equal:

• When the numbers are binary, the digits are either 1 or 0,
and the equality of each pair of bits can be expressed
logically with an exclusive-NOR function as:

• where xi = 1 only if the pair of bits in position i are equal
(i.e., if both are 1 or both are 0).

Magnitude Comparator

• The comparison of two numbers is
operation that determines whether

an
one

number is greater than, less than, or equal to
the other number.

• A magnitude comparator is a combinational
circuit that compares two numbers A and B
and determines their relative magnitudes.

• The outcome of the comparison is specified by
three binary variables that indicate whether
A > B, A = B, or A < B.

08-Oct-20

17

• To determine whether A is greater or less than B ,
inspect the relative magnitudes of pairs of
significant digits, starting from the MSB.

• If the two digits of a pair are equal, compare the

next lower significant pair of digits.

• The comparison continues until a pair of unequal
digits is reached.

• If the corresponding digit of A is 1 and that of B is

0, conclude that A > B.

• If the corresponding digit of A is 0 and that of B is
1, then A < B.

• The equality of the two numbers A and B is displayed
in a combinational circuit by an output binary
variable that we designate by the symbol (A = B)

• This binary variable is equal to 1 if the input
numbers, A and B , are equal, and is equal to 0
otherwise.

• For equality to exist, all xi variables must be equal to
1, a condition that dictates an AND operation of all
variables:

• The binary variable (A = B) is equal to 1 only if all

pairs of digits of the two numbers are equal.

08-Oct-20

18

Four-bit magnitude comparator

• The sequential comparison can be expressed
logically by the two Boolean functions:

x3x2A1’B1 + x3x2x1A0’B0

• The symbols (A > B) and (A < B) are binary output

variables that are equal to 1 when A > and A < B,
respectively.

08-Oct-20

19

• The decoders presented here are called n -to-

m -line decoders, where m ≤ 2n.

• Their purpose is to generate the 2n (or fewer)

minterms of n input variables.

• Each combination of inputs will assert a

unique output.

• The name decoder is also used in conjunction

with other code converters, such as a BCD-to-
seven-segment decoder.

Decoder
• A binary code of n bits is

representing up to 2n distinct
coded information.

capable of
elements of

• A decoder is a combinational circuit that
converts binary information from n input lines

to a maximum of 2n unique output lines.

• If the n-bit coded information has unused
combinations, the decoder may have fewer

than 2n outputs.

08-Oct-20

20

2-to-4 decoder

Consider a 2-to-4 decoder.

Here n =2 , m=22 = 4

08-Oct-20

21

2-to-4 decoder with enable

It is useful to include an enable input, En in a
decoder circuit.

08-Oct-20

22

Encoders

• An encoder performs the opposite function of a
decoder.

• It encodes given information into a more
compact form.

• A Binary encoder encodes information from 2n
inputs into an n-bit code, as shown.

• Exactly one of the input signals should have a
value of 1, and the outputs present the binary
number that identifies which input is equal to 1.

08-Oct-20

23

4-2 Encoder
• The truth table for a 4-to-2 encoder is shown.

• Observe that the output y0 is 1 when either
input w1 or w3 is 1, and output y1 is 1 when
input w2 or w3 is 1.

• Hence these outputs can be generated by the
circuit shown.

• Assume that the inputs are one-hot encoded.

• All input patterns that have multiple inputs set
to 1 are not shown in the truth table, and they
are treated as don’t-care conditions.

A 2n-to-n binary encoder

08-Oct-20

24

Applications

• Encoders are used to reduce the number of
bits needed to represent given information.

• A practical use of encoders is for transmitting
information in a digital system.

• Encoding the information allows the
transmission link to be built using fewer wires.

• Encoding is also useful if information is to be
stored for later use because fewer bits need to
be stored.

08-Oct-20

25

• It assumes that w0 has the lowest priority and w3
the highest.

• The outputs y1 and y0 represent the binary
number that identifies the highest priority input
set to 1.

• Since it is possible that none of the inputs is equal
to 1, an output, z, is provided to indicate this
condition.

• It is set to 1 when at least one of the inputs is
equal to 1.

• It is set to 0 when all inputs are equal to 0.
• The outputs y1 and y0 are not meaningful in this

case, and hence the first row of the truth table
can be treated as a don’t-care condition for y1
and y0.

Priority Encoders

• Another useful class of encoders is based on
the priority of input signals.

• In a priority encoder each input has a priority
level associated with it.

• The encoder outputs indicate the active input
that has the highest priority.

• When an input with a high priority is asserted,
the other inputs with lower priority are
ignored.

• The truth table for a 4-to-2 priority encoder is
shown in diagram.

08-Oct-20

26

• The behavior of the priority encoder is most easily
understood by first considering the last row in the truth
table.

• It specifies that if input w3 is 1, then the outputs are
set to y1y0 = 11.

• Because w3 has the highest priority level, the values of
inputs w2, w1, and w0 do not matter.

• To reflect the fact that their values are irrelevant, w2,
w1, and w0 are denoted by the symbol x in the truth
table.

• The second-last row in the truth table stipulates that
• if w2 = 1, then the outputs are set to y1y0 = 10, but

only if w3 = 0.
• Similarly, input w1 causes the outputs to be set to y1y0

= 01 only if both w3 and w2 are 0.
• Input w0 produces the outputs y1y0 = 00 only if w0 is

the only input that is asserted.

Truth table for a 4-to-2 priority encoder.

08-Oct-20

27

4-to-2 priority encoder

w3

y0

w2

w1

y1

w0
z

08-Oct-20

28

e

Typical Application of a MUX

Multiplexer (MUX)

• A MUX is a digital switch that
has multiple inputs (sources)
and a single output
(destination).

• The select lines determine
which input is connected to th
output.

• MUX Types

• 2-to-1 (1 select line)

• 4-to-1 (2 select lines)

• 8-to-1 (3 select lines)

• 16-to-1 (4 select lines)

08-Oct-20

29

Typical Application of a DEMUX

Demultiplexer (DEMUX)

• A DEMUX is a digital switch
with a single input (source)
and a multiple outputs
(destinations).

• The select lines determine
which output the input is
connected to.

• DEMUX Types
• 1-to-2 (1 select line)
• 1-to-4 (2 select lines)
• 1-to-8 (3 select lines)
• 1-to-16 (4 select lines)

08-Oct-20

30

Medium Scale Integration DEMUX

1-to-4 De-Multiplexer (DEMUX)

08-Oct-20

31

Half Adder

• This circuit needs two binary inputs and two
binary outputs.

• The input variables designate the augend and
addend bits;

• the output variables produce the sum and carry.

• We assign symbols x and y to the two inputs and
S (for sum) and C (for carry) to the outputs.

08-Oct-20

32

08-Oct-20

33

Full Adder

08-Oct-20

34

It can also be implemented with two half
adders and one OR gate, as shown,

08-Oct-20

35

The S output from the second half adder is
the exclusive-OR of z and the output of the
first half adder, giving,

The carry output is,

18-10-2020

1

Four-bit adder

Binary Adder
• A binary adder is a digital circuit that produces

the arithmetic sum of two binary numbers.

• Full adders are connected in cascade, with the
o/p carry from each full adder connected to
the i/p carry of the next full adder in the
chain.

• Addition of n-bit numbers requires a chain of
n full adders.

• The input carry to lsb position is fixed at 0.

18-10-2020

2

Consider the two binary numbers A = 1011,B = 0011.
Their sum S = 1110 needs four-bit adder as follows:

• Interconnection of four full-adder (FA) circuits
to provide a four-bit binary ripple carry adder.

• The augend bits of A and the addend bits of B
are designated by subscript numbers from
right to left, with subscript 0 denoting the Lsb.

• The carries are connected in a chain through
the full adders.

• The input carry to the adder is C0, and it
ripples through the full adders to the output
carry C4.

• The S outputs generate the required sum bits.

• An n -bit adder requires n full adders, with
each output carry connected to the input
carry of the next higher order full adder.

18-10-2020

3

Binary Subtractor
• The subtraction of unsigned binary numbers

can be done by complements.

• subtraction A - B can be done by taking the 2’s
complement of B and adding it to A .

• The 2’s complement can be obtained by taking
the 1’s complement and adding 1 to the lsb
pair of bits.

• The 1’s complement can be implemented with
inverters, and a 1 can be added to the sum
through the input carry.

• The bits are added with full adders, starting from lsb,
to form the sum bit and carry bit.

• The input carry C0 in the lsb must be 0.
• The value of Ci+1 in a given significant position is the

output carry of the full adder.
• This value is transferred into the input carry of the full

adder that adds the bits one higher significant position
to the left.

• The sum bits are thus generated starting from the
rightmost position and are available as soon as the
corresponding previous carry bit is generated.

• All the carries must be generated for the correct sum
bits to appear at the outputs.

• The four-bit adder is a typical example of a standard
component.

• It can be used in many applications involving arithmetic
operations.

18-10-2020

4

Four-bit adder–subtractor (with overflow detection)

• The circuit for subtracting A - B consists of an

adder with inverters placed between each data
input B and the corresponding input of the full
adder.

• The input carry C0 must be equal to 1 when
subtraction is performed.

• The operation thus performed becomes A, plus
the 1’s complement of B , plus 1.

• This is equal to A plus the 2’s complement of B
• For unsigned numbers, that gives A - B if A ≥B or

the 2’s complement of B − A if A < B.
• For signed numbers, the result is A - B, provided

that there is no overflow.

18-10-2020

5

Overflow
• When two numbers with n digits each are

added and the sum is a number occupying
n + 1 digits, we say that an overflow occurred.

• This is true for binary or decimal numbers,
signed or unsigned.

• Overflow is a problem since the bits that hold
the number is finite and a result that contains
n + 1 bits cannot be put up by an n -bit word.

• So, it is needed to detect the occurrence of an
overflow.

• The add and sub operations can be combined into one
circuit with one common binary adder by including an
ex-OR gate with each full adder.

• A four-bit adder–subtractor circuit is shown.
• The mode input M controls the operation.
• When M = 0, circuit is an adder, and when M = 1,

circuit becomes a subtractor.
• Each ex-OR gate receives input M and one of i/ps of B .
• When M = 0, we have B ⊕ 0 = B.
• The full adders receive the value of B , the i/p carry is 0,

and the circuit performs A plus B .
• When M = 1, we have B ⊕ 1 = B and C0 = 1.
• The B i/ps are all inverted and a 1 is added thro’ i/p

carry.
• The circuit performs the operation A plus the 2’s

complement of B .
• The ex-OR with output V is for detecting an overflow.

18-10-2020

6

• An overflow condition can be detected by
observing the carry into the sign bit position
and the carry out of the sign bit position.

• If these two carries are not equal, an overflow
has occurred.

• If the two carries are applied to an ex-OR gate,
an overflow is detected, when the output of
the gate is equal to 1.

• For this to work correctly, the 2’s complement
of a negative number must be computed by
taking the 1’s complement and adding 1.

• The detection of an overflow after addition of
numbers depends on whether the numbers are
signed or unsigned.

• When two unsigned numbers are added, an
overflow is detected from the end carry out of
the msb.

• In the case of signed numbers, two details are
important:
– the leftmost bit always represents the sign, and

– negative numbers are in 2’s-complement form.

• When two signed numbers are added, the sign bit
is treated as part of the number and the end
carry does not indicate an overflow.

• An overflow may occur if the two numbers added
are both positive or both negative.

18-10-2020

7

BCD Adder
• Consider the arithmetic addition of two

decimal digits in BCD, together with an input
carry from a previous stage.

• Since each input digit does not exceed 9, the
output sum cannot be greater than 9 + 9 + 1 =
19, the 1 in the sum being an input carry.

• Suppose we apply two BCD digits to a four-bit
binary adder.

• The adder will form the sum in binary and
produce a result that ranges from 0 through
19.

18-10-2020

8

• When the binary sum is equal to or less than
1001, the corresponding BCD number is
identical, and so no conversion is needed.

• When the binary sum is greater than 1001, we
obtain an invalid BCD representation.

• The addition of binary 6 (0110) to the binary
sum converts it to the correct BCD value and
also produces an output carry as required.

• The logic circuit that detects the necessary
correction can be derived from the entries in
the table.

• It is obvious that a correction is needed when
the binary sum has an output carry K = 1.

• These binary numbers are listed and are
labeled by symbols K, Z8, Z4, Z2, and Z1.

• K is the carry, and the subscripts under the
letter Z represent the weights 8, 4, 2, and 1
that can be assigned to four bits in BCD code.

• The columns under binary sum list the binary
value that appears in the o/ps of the four-bit
binary adder.

• The output sum of two decimal digits must be
represented in BCD and should appear in the
form listed in the columns under “BCD Sum.”

18-10-2020

9

Block diagram of a BCD Adder

• The other six combinations from 1010 through
1111 that need a correction have a 1 in
position Z8.

• To distinguish them from binary 1000 and
1001, which also have a 1 in position Z8,
specify that either Z4 or Z2 must have a 1.

• The condition for a correction and an output
carry can be expressed by the Boolean
function,

• When C = 1, it is needed to add 0110 to binary

sum and provide an o/p carry for next stage.

18-10-2020

10

• The two decimal digits, together with the input
carry, are first added in the top four-bit adder to
produce the binary sum.

• When the output carry is equal to 0, nothing is
added to the binary sum.

• When it is equal to 1, binary 0110 is added to the
binary sum thro’ the bottom four-bit adder.

• The output carry generated from bottom adder
can be ignored, since it supplies information
already available at the output carry terminal.

• A decimal parallel adder that adds n decimal
digits needs n BCD adder stages.

• The o/p carry from one stage must be connected
to the i/p carry of the next higher order stage.

20-10-2020

1

Design of Arithmetic Circuits Using
Verilog

• To implement the full-adder circuit that has the
inputs Cin, x and y and produces the outputs
s and Cout.

• One way of specifying this circuit in Verilog is to
use the gate-level primitives

• Each of the three AND gates in the circuit is
defined by a separate statement.

• Verilog allows combining such statements into a
single statement.

• In this case, commas are used to separate the
definition of each AND gate.

Gate Level Modelling of

Combinational Logic in Verilog

ECT 203 Module – III (Cont…)

20-10-2020

2

// declare Cin, x and y as system inputs

// declare Cout and s as system outputs

x

y s

C in

C out

Logic Circuit of Full Adder

20-10-2020

3

• Another possibility is to use functional
expressions.

• The XOR operation is denoted by the ^ sign.

• Again, it is possible to combine the two
continuous assignment statements into a
single statement.

• Both of the above approaches result in the
same full-adder circuit being synthesized.

• Use Full Adder code to build a Multi-bit Adder.

20-10-2020

4

20-10-2020

5

Ripple Carry Adder (RCA)

• Create a separate Verilog module for the ripple-
carry adder, which instantiates the fulladd
module as a sub circuit.

• One method of doing this is shown.
• The module comprises the code for a four-bit

ripple-carry adder, named adder4.
• One of the 4-bit numbers to be added is

represented by the four signals x3, x2, x1, x0, and
the other is represented by y3, y2, y1, y0.

• The sum is represented by s3, s2, s1, s0.
• The circuit incorporates a carry input, carryin,

into the lsb position and a carry output, carryout,
from the msb position.

20-10-2020

6

• The four-bit adder is described using four
instantiation statements.

• Each statement begins with the name of the
module, fulladd, that is being instantiated,
followed by an instance name.

• The instance names must be unique.
• The least-significant stage in the adder is named

stage0 and the most-significant stage is stage3.
• The signal names in the adder4 module that are

to be connected to each input and output port on
the fulladd module are then listed.

• These signals are listed in the same order as in
the fulladd module, namely the order Cin, x, y, s,
Cout.

20-10-2020

7

Using Vectored Signals
• Each of the four-bit inputs and the four-bit

output of the adder is represented using single-
bit signals.

• A more convenient approach is to use multi-bit
signals, called vectors, to represent the numbers.

• Just as a number is represented in a logic circuit
as signals on multiple wires, it can be represented
in Verilog code as a multi-bit vector.

• The signal names associated with each instance
of the fulladd module implicitly specify how the
full-adders are connected together.

• For example, the carry-out of the stage0 instance
is connected to the carry-in of the stage1
instance.

• The synthesized circuit has the same structure as
the original block diagram.

• The fulladd module may be included in the same
Verilog source code file as the adder4 module.

• If compiler needs the function, create another file
fulladd and the location of the file fulladd has to
be indicated to the compiler.

20-10-2020

8

• Use vectors to specify the four-bit adder.
• In addition to the input vectors X and Y ,

and output vector S, chose to define the
carry signals between the full-adder
stages as a three-bit vector C[3:1].

• Note that the carry into stage0 is still
called carryin, while the carry from stage3
is called carryout.

• The internal carry signals are defined in
the statement,

wire [3:1] C;

An example of an input vector is,

This statement defines X to be a four-bit vector.

Its individual bits can be referred to by using an index
value in square brackets.

The (MSB) is referred to as X [3] and the (LSB) is X [0].

A two-bit vector that consists of the two middle bits of X
is denoted as X [2:1].

The symbol X refers to the entire vector.

20-10-2020

9

• Signal C[1] is used to connect the carry
output of the full-adder in stage 0 to the
carry input of the full-adder in stage 1.

• Similarly, C[2] and C[3] are used to connect

the other stages of the adder.

• The vector specification gives the bit width
in square brackets, as in X [3:0].

• The bit width is specified using the index of
the MSB first and the LSB last.

• Hence, X [3] is the MSB and X [0] is the LSB.

20-10-2020

10

• If the conditional expression evaluates to 1
(true), then the value of true_expression is
chosen;

• otherwise, the value of false_expression is
chosen.

• For example, the statement
• A= (B < C) ? (D + 5) : (D + 2);
• means that if B is less than C, the value of A

will be D + 5, or else A will have value D + 2.
• The conditional operator can be used both in

continuous assignment statements and in
procedural statements inside an always
block.

The Conditional Operator

• In a logic circuit it is needed to choose between
several possible signals or values.

• It’s based on the state of some condition.
• An example is a multiplexer circuit in which the

output is equal to the data input signal chosen by
the valuation of the select inputs.

• For simple implementation of such choices
Verilog provides a conditional operator (?:) which
assigns one of two values depending on a
conditional expression.

• It involves three operands used in the syntax
• conditional_expression ?

true_expression :
false_expression

20-10-2020

11

• A 2-to-1 multiplexer can be defined using the

conditional operator in an assign statement.
• The module, named mux2to1, has the inputs w0, w1,

and s, and the output f .
• The signal s is used for the selection criterion.
• The output f is equal to w1 if the select input s has

the value 1;
• otherwise, f is equal to w0.

20-10-2020

12

20-10-2020

13

Example

• The if-else statement can be used to describe

a 2-to-1 multiplexer.
• The if clause states that f is assigned the value

of w0 when s = 0.
• Else, f is assigned the value of w1.

The If-Else Statement

if(conditional_expression)
statement;
else statement;

• The conditional expression may use the

relational operators.
• If the expression is evaluated to true then

the first statement (or a block of statements
delineated by begin and end keywords) is
executed, or else the second statement (or
a block of statements) is executed.

20-10-2020

14

• The if-else statement can be used to implement
larger multiplexers.

• A 4-to-1 multiplexer is shown.
• The if-else clauses set f to the value of one of the

inputs w0, . . . ,w3, depending on valuation of S.

20-10-2020

15

Alternate code

• Another way of defining the same circuit is
shown.

• In this case, a four-bit vector W is defined
instead of single-bit signals w0, w1, w2, and
w3.

• Also, the four different values of S are
specified as decimal rather than binary
numbers.

20-10-2020

16

16-to-1 Multiplexer
• A 16-to-1 multiplexer can be built by using five 4-to-1

multiplexers.

• Verilog code for this circuit uses 5 instantiations of
mux4to1 module.

• The data inputs to the mux16to1 module are the 16-bit
vector W, and the select inputs are the four-bit vector S.

• In the Verilog code signal names are needed for the
outputs of the four 4-to-1 multiplexers on the left.

• A four-bit signal named M is used for this purpose.

• The first multiplexer instantiated, Mux1, corresponds to
the multiplexer at the top left.

• Its first four ports are driven by the signals W[0], . . . ,
W[3].

20-10-2020

17

• The syntax S[1:0] is used to attach the signals S[1] and

S[0] to the two-bit S port of mux4to1 module.

• The M[0] signal is connected to the multiplexer’s
output port.

• Similarly, Mux2, Mux3, and Mux4 are instantiations of
the next three multiplexers on the left.

• The Multiplexer on the right is instantiated as Mux5.

• The signals M[0], . . . , M[3] are connected to its data
inputs, and bits S[3] and S[2] are attached to the select
inputs.

• The output port generates the mux16to1 output f .

• Compiling the code results in the multiplexer function

20-10-2020

18

• Since mux4to1 module is being instantiated in
the code, it is necessary to either include the
code in same file as the mux16to1 module or
place the mux4to1 module in a separate file in
same directory.

• Observe that if the scalar code were used as

the required mux4to1 module, then need to
list the ports separately, as in W[0], W[1],
W[2], W[3], rather than as the vector W[0:3].

20-10-2020

19

• The value of the controlling expression and

each alternative are compared bit by bit.

• When there is one or more matching
alternative, the statement(s) associated with
the first match (only) is executed.

• When the specified alternatives do not cover
all possible valuations of the controlling
expression, the optional default clause should
be included.

The Case Statement

20-10-2020

20

4:1 MUX using case statement

• The case statement can be used to define a
4-to-1 multiplexer.

• The four values that the select vector S can
have are given as decimal numbers, but they
could also be given as binary numbers.

20-10-2020

21

2-to-4 Binary Decoder
• A case statement can be used to describe the truth table

for a 2-to-4 binary decoder.
• The data inputs are two-bit vector W, and the enable input

is En.
• The four outputs are represented by the four-bit vector Y .
• In truth table, the inputs are listed in the order En, w1, w0.
• To represent these three signals in the controlling

expression, Verilog code uses concatenate operator to
combine the En and W signals into a three-bit vector.

• The four alternatives in the case statement correspond to
the truth table in where En = 1, and the decoder outputs
have the same patterns as in the first four rows of the truth
table.

• The last clause uses the default keyword and sets the
decoder outputs to 0000, because it represents all other
cases, namely those where En = 0.

20-10-2020

22

Alternative way

• The 2-to-4 decoder can be specified using a
combination of if-else and case statements.

• If En = 0, then all four bits of the output Y are
set to the value 0, else

• the case alternatives are evaluated if En = 1.

20-10-2020

23

06-11-2020

1

SEQUENTIAL CIRCUITS
• It consists of a combinational circuit to which storage

elements are connected to form a feedback path.

• The binary information stored in these elements at
any given time defines the State of the sequential
circuit at that time.

• The sequential circuit receives information from
external i/ps that, together with the present state of
the storage elements, determine the binary value of
the outputs.

• These external i/ps also determine the condition for
changing the state.

Sequential Logic Circuits

ECT Module IV

06-11-2020

2

S R Latch

06-11-2020

3

• Under normal conditions, both I /ps of the
latch remain at 0 unless the state has to be
changed.

• The application of a 1 to the S input causes
the latch to go to the set state.

• The S input must go back to 0 before any
other changes take place, in order to avoid the
occurrence of an undefined next state that
results from the forbidden input condition.

• As shown in the function table, two i/p
conditions cause the circuit to be in set state.

• The SR latch is a circuit with two cross-coupled NOR
gates or two cross-coupled NAND gates, and two i/ps
labeled S for set and R for reset.

• The latch has two useful States.
• When output Q = 1 and Q’ = 0, the latch is said to be in

the set state .
• When Q = 0 and Q’ = 1, it is in the reset state .
• Outputs Q and Q are normally the complement of

each other.
• However, when both inputs are equal to 1 at the same

time, a condition in which both outputs are equal to 0
occurs.

• If both inputs are then switched to 0 simultaneously,
the device will enter an unpredictable or undefined
state or a metastable state.

• So, in practical applications, setting both inputs to 1 is
forbidden.

06-11-2020

4

• The first condition (S = 1,R = 0) is the action that must
be taken by input S to bring the circuit to the set state.

• Removing the active i/p from S leaves the circuit in
same state.

• After both i/ps return to 0, it is then possible to shift to
the reset state by applying a 1 to the R input.

• The 1 can then be removed from R, whereupon the
circuit remains in the reset state.

• Thus, when both i/ps S and R are equal to 0, the latch
can be in either the set or the reset state, depending
on which input was most recently a 1.

• If a 1 is applied to both the S and R inputs of the latch,
both outputs go to 0.

• In normal operation, this condition is avoided by
making sure that 1’s are not applied to both inputs
simultaneously.

06-11-2020

5

• To change to the reset state, the inputs must
be S = 0, R = 1, and En = 1.

• In either case, when En returns to 0, the
circuit remains in its current state.

• The control input disables the circuit by
applying 0 to En, so that the state of the
output does not change regardless of the
values of S and R .

• Moreover, when En = 1 and both the S and R
inputs are equal to 0, the state of the circuit
does not change.

SR latch with a control input
• It consists of the basic SR latch and two additional

NAND gates.

• The control input En acts as an enable signal for
the other two inputs.

• The outputs of the NAND gates stay at the logic-
1 level as long as the enable signal remains at 0.

• This is the quiescent condition for the SR latch.

• When the enable input goes to 1, information
from the S or R input is allowed to affect the
latch.

• The set state is reached with S = 1, R = 0, En = 1

06-11-2020

6

D Latch (Transparent Latch)
• To remove the undesirable condition of the

indeterminate state in the SR latch ensure that i/p
S and R are never equal to 1 at the same time.

• This is done in the D latch.

• This latch has only two i/p: D (data) and En (enable).

• The D i/p goes directly to S input, its complement is
applied to the R i/p.

• With enable i/p is at 0, the cross-coupled SR latch
has both i/p at the 1 level and the circuit cannot
change state regardless of the value of D .

• An indeterminate condition occurs when all three

inputs are equal to 1.
• This condition places 0’s on both inputs of the

basic SR latch, which puts it in the undefined
state.

• When the enable input goes back to 0, one
cannot conclusively determine the next state,
because it depends on whether the S or R input
goes to 0 first.

• This indeterminate condition makes this circuit
difficult to manage, and it is seldom used in
practice.

• SR latch is an important circuit because other
useful latches and flip-flops are constructed from
it.

06-11-2020

7

So, Class, tell me how to convert
a S R latch to D latch …

• The D i/p is sampled when En = 1.

• If D = 1, the Q output goes to 1, placing the
circuit in the set state.

• If D = 0, output Q goes to 0, placing the circuit
in the reset state.

06-11-2020

8

• The D latch is suited for use as a temporary
storage for binary information.

• The binary information present at data i/p of D
latch is transferred to Q output when enable i/p is
asserted.

• The o/p follows changes in the data input as long
as the enable i/p is asserted.

• This situation provides a path from i/p D to the
o/p, and for this reason, the circuit is often called
a transparent latch.

• When the enable i/p signal is de-asserted, the
binary info present at the data i/p at the time the
transition occurred is retained (i.e., stored) at the
Q o/p until the enable i/p is asserted again.

NOR S R Latch NAND S’ R’ Latch

06-11-2020

9

Points to Ponder: Latch vs Flip-Flop

• Flip-flop circuits are built to make them operate
properly when they are part of a sequential
circuit that employs a common clock.

• The problem with the latch is that it responds to
a change in the level of a clock pulse.

• The key to the proper operation of a flip-flop is to
trigger it only during a signal transition .

• A clock pulse goes through two transitions: from
– 0 to 1 Positive Edge response

– from 1 to 0 Negative Edge response

06-11-2020

10

Edge-Triggered D Flip-Flop

• A D flip-flop is built with two D latches and an
inverter.

• The first latch is called the Master and the
second latch is the Slave.

• The circuit samples the D i/p and changes its
o/p Q only at the -ve edge of clock Clk .

• When the clock is 0, o/p of the inverter is 1.

• The slave latch is enabled, and its o/p Q is
equal to the master o/p Y .

• The master latch is disabled because Clk = 0.

Latch Flip-Flop

• Modify a latch to form a flip-flop.

– Use two latches in a special configuration that

isolates o/p of flip-flop, prevents it from being
affected while i/p to flip-flop is changing.

– To produce a flip-flop that triggers only during a
signal transition (from 0 to 1 or from 1 to 0) of
synchronizing signal (clock) and is disabled during
rest of the clock pulse.

06-11-2020

11

• When the i/p pulse changes to logic-1 level, data
from ext D i/p are transferred to Master.

• The ‘poor’ slave is disabled as long as the clock
remains at the 1 level, as its enable input is 0.

• Any change in i/p changes the Master o/p at Y,
but cannot affect the slave o/p.

• When the clock pulse returns to 0, the Master is
disabled and is isolated from the D input.

• At same time, slave is enabled and value of Y is
transferred to o/p of flip-flop at Q .

• Thus, a change in the o/p of the flip-flop can be
triggered only by transition of clock from 1 to 0.

• Similarly, a change in the o/p of the flip-flop can
be triggered only by transition of clock from 0 to 1
by use of addnl inverter at Clk i/p.

06-11-2020

12

Q Q

Q’
Q’

Flip Flop changes State with every Clock edge
Flip Flop at Clock edge at t=1, changes to next
State at Clock edge at t=2, FF at Clock edge at
t=2 changes to next state at Clock edge at t=3
and so on ….
Hence given state Q(t) the next state is Q(t+1)

Graphic Symbol for ET or M-S D FF
• It is similar to the symbol used for the D latch,

except for the arrowhead-like symbol in front
of the letter Clk, designating a dynamic input.

• The dynamic indicator (>) indicates that flip-
flop responds to the edge transition of clock.

• A bubble besides dynamic indicator indicates
a negative edge for triggering the circuit.

• Absence of a bubble designates a positive-
edge response.

06-11-2020

13

J-K Flip Flop
Certified as Universal Flip Flop by ANSI and IEEE

Q

Q’

Jack Kilby (J-K) Flip Flop

Nobel
1
P
0-

r
12
iz
-2
e
0
L
00

aureate
08-11-1923 – 20-06-2005

So, Class, tell me how to convert
a D flip flop to J K flip flop…

06-11-2020

14

T Flip Flop from D Flip Flop

Q

Q’

So, Class, tell me how to convert
a D flip flop to T flip flop…

T Flip Flop from J-K Flip Flop

Q

Q’

So, Class, tell me how to convert
a J K flip flop to T flip flop…

06-11-2020

15

Characteristic Tables of Flip Flops

Q

Q’

06-11-2020

16

Excitation Tables

Characteristic Equations

D flip Flop

JK flip Flop

T flip Flop

06-11-2020

17

Binary Ripple Counter
• A binary ripple counter consists of a series

connection of T flip-flops, with output of each
flip-flop connected to Clk input of next higher
order flip-flop.

• The flip-flop holding the lsb receives incoming
count pulses.

• Also can use D flip-flop with complement
output connected to the D input.

• So, the D input is always the complement of
the present state, and the next clock pulse will
cause the flip-flop to complement.

06-11-2020

18

06-11-2020

19

• Thus, the count from 0011 to 0100 is achieved
by changing the bits one at a time, so the
count goes from 0011 to 0010, then to 0000,
and finally to 0100.

• The flip-flops change one at a time in
succession, and the signal propagates through
the counter in a ripple fashion from one stage
to the next.

Operation of Ripple Counter

• The lsb, A0, is complemented with each count pulse input.
• Every time that A0 goes from 1 to 0, it complements A1.
• Every time that A1 goes from 1 to 0, it complements A2.
• Every time that A2 goes from 1 to 0, it complements A3,

and so on for any other higher order bits of a ripple
counter.

• For example, consider transition from count 0011 to 0100.
• A0 is complemented with the count pulse.
• Since A0 goes from 1 to 0, it triggers A1, complements it.
• As a result, A1 goes from 1 to 0, which in turn complements

A2, changing it from 0 to 1.
• A2 does not trigger A3, as A2 produces a positive transition

and the flip-flop responds only to negative transitions.

06-11-2020

20

Synchronous counters
• Synchronous counters are different from ripple

counters in that clock pulses are applied to the
inputs of all flip-flops.

• A common clock triggers all flip-flops
simultaneously, rather than one at a time in
succession as in a ripple counter.

• The decision whether a flip-flop is to be inverted is
determined from the values of the data inputs,
such as T or J and K at the time of the clock edge.

• If T = 0 or J = K = 0, flip-flop does not change state.

• If T = 1 or J = K = 1, the flip-flop complements.

06-11-2020

21

• Synchronous binary counters have a regular
pattern and can be built with J K Flip Flops and
Gates.

• C inputs of all flip-flops are connected to a
common clock.

• The counter is enabled by Count_enable.
• If the enable input is 0, all J and K inputs are

equal to 0 and the clock does not change the
state of the counter.

• First stage, A0, has its J=1 and K =1 if counter is
enabled.

• The other J and K inputs are equal to 1 if all
previous least significant stages are equal to 1
and the count is enabled.

• The chain of AND gates generates the required
logic for the J and K inputs in each stage.

• In a synchronous binary counter, the flip-flop in the
least significant position is complemented with
every pulse.

• A flip-flop in any other position is complemented
when all the bits in the lower significant positions
are equal to 1 .

• For example, if the present state of a four-bit
counter is A3A2A1A0 = 0011, the next count is 0100.

• A0 is always complemented.

• A1 is complemented as the present state of A0 = 1.

• A2 is complemented as present state of A1A0 = 11.

• But, A3 is not complemented, as present state of
A2A1A0 = 011, which is not an all-1’s condition.

06-11-2020

22

Registers

• A flip-flop stores one bit of information.

• When a set of n flip-flops is used to store n
bits of information, such as an n-bit number,
we refer to these flip-flops as a register.

• A common clock is used for each flip-flop in a
register, and each flip-flop operates in a
synchronous manner.

• A register that provides the ability to shift its
contents is called a shift register.

• In general, Counter can have any no: of stages,
with each stage having an addnl flip-flop and
an AND gate that gives an output of 1 if all
previous flip-flop outputs are 1.

• Note that the flip-flops trigger on the positive

edge of the clock.

• The polarity of the clock is not essential here,
but it is with the ripple counter.

• The synchronous counter can be triggered
with either the positive or the negative clock
edge.

06-11-2020

23

(b) A sample sequence

Four-bit Shift Register

• A four-bit shift register that is used to shift its
contents one bit position to the right.

• The data bits are loaded into the shift register
in a serial manner using the In input.

• The contents of each flip-flop are transferred
to the next flip-flop at each positive edge of
the clock.

06-11-2020

24

Parallel-Access Shift Register
• In computer systems it is needed to transfer n-bit data

items.
• This may be done by transmitting all bits at once using n

separate wires, in which case the transfer is performed in
parallel.

• But it is also possible to transfer all bits using a single wire,
by performing the transfer one bit at a time, in n
consecutive clock cycles. This scheme is serial transfer.

• To transfer an n-bit data item serially, we can use a shift
register that can be loaded with all n bits in parallel (in one
clock cycle).

• Then during the next n clock cycles, the contents of the
register can be shifted out for serial transfer.

• The reverse operation is also needed.
• If bits are received serially, then after n clock cycles the

contents of the register can be accessed in parallel as an n-
bit item.

• A four-bit shift register is used to shift its

contents one bit position to the right.

• The data bits are loaded into the shift register
in a serial fashion using the In input.

• The contents of each flip-flop are transferred
to the next flip-flop at each positive edge of
the clock.

• Figure b, shows what happens when the signal
values at In during eight consecutive clock
cycles are 1, 0, 1, 1, 1, 0, 0, and 0, assuming
that the initial state of all flip-flops is 0.

06-11-2020

25

• A four-bit shift register provides the parallel access.
• A 2-to-1 MUX on its D input allows each flip-flop to be

connected to two different sources.
• One source is the preceding flip-flop, which is needed

for the shift-register operation.
• The other source is the external i/p that corresponds to

the bit that is to be loaded into the flip-flop as a part of
the parallel-load operation.

• The control signal Shift/Load is used to select the mode
of operation.

• If Shift/Load = 0, then circuit operates as a shift
register.

• If Shift/Load = 1, then the parallel input data are
loaded into the register.

• In both cases the action takes place on the positive
edge of the clock

06-11-2020

26

Mod N Counter

• Need to be able to clear, or reset, the contents of a
counter before a counting operation.

• This can be done using the clear i/p of the individual
flip-flops.

• Also can reset count to 0 during normal counting
process.

• An n-bit up-counter functions as a modulo-2n counter.
• Consider a counter that counts modulo some base that

is not a power of 2.
• For ex, design a modulo-6 counter, for which the

counting sequence is 0, 1, 2, 3, 4, 5, 0, 1, and so on.

• Label the flip-flops’ outputs as Q3, . . . ,Q0 as shift
registers are often used to hold binary numbers.

• The contents of the register can be accessed in
parallel by observing the outputs of all flip-flops.

• The flip-flops can also be accessed serially, by
observing the values of Q0 during consecutive
clock cycles while the contents are being shifted.

• A circuit in which data can be loaded in series and
then accessed in parallel is called a series-to-
parallel converter.

• Similarly, the opposite type of circuit is a parallel-
to-series converter.

06-11-2020

27

Modulo-6 counter

Modulo-6 counter

• To recognize when the count reaches 5 and
then reset the counter.

• An AND gate can be used to detect occurrence
of the count of 5.

• Actually, it is sufficient to ascertain that Q2 =
Q0 = 1, which is true only for 5 in the desired
counting sequence.

06-11-2020

28

Ring Counter
• Design a Counter in which each flip-flop reaches the

state Qi = 1 for exactly one count, for all other counts
Qi = 0.

• Qi indicates directly occurrence of corresponding
count.

• Such a circuit can be built from a simple shift register.
• The Q output of the last stage in the shift register is fed

back as the input to the first stage, which creates a ring
-like structure.

• If a single 1 is injected into the ring, this 1 will be
shifted through the ring at successive clock cycles.

• For example, in a four-bit structure, the possible codes
Q0Q1Q2Q3 will be 1000, 0100, 0010, and 0001.

• Such encoding, where there is a single 1 and the rest of
the code variables are 0, is called a One-Hot Code.

• Such a circuit is referred to as a Ring Counter.

• Since the clear inputs are active when low, a

NAND gate is used to detect the occurrence of
the count of 5 and cause the clearing of all
three flip-flops.

• As soon as the count reaches this value, the
NAND gate triggers the resetting action.

• The flip-flops are cleared to 0 a short time
after NAND gate has detected the count of 5.

06-11-2020

29

Operation of Ring Counter

• Its operation has to be initialized by injecting a
1 into the first stage.

• This is achieved by using the Start control
signal, which presets the left-most flip-flop to
1 and clears the others to 0.

• Assume that all changes in value of the Start
signal occur shortly after an active clock edge
so that the flip-flop timing parameters are not
violated.

An n-bit Ring Counter

06-11-2020

30

4-bit Ring Counter

• A ring counter can be built with ‘n’ no: bits.
• For n = 4, a ring counter can be constructed using a

two-bit up-counter and a decoder.
• When Start is set to 1, the counter is reset to 00.
• After Start changes back to 0, the counter increments

its value in the normal way.
• The 2-to-4 decoder, changes the counter output into a

one-hot code.
• For the count values 00, 01, 10, 11, 00, and so on, the

decoder produces Q0Q1Q2Q3 = 1000, 0100, 0010, 0001,
1000, and so on.

• This circuit structure can be used for larger ring
counters, as long as the number of bits is a power of 2.

06-11-2020

31

Johnson Counter

Robert Royce

" ob" ohnson

(1928–2016) Johnson Counter
• An interesting variation of the Ring Counter results if, instead of Q

output, Q’ output of last stage is taken and feed it back to first stage.
• This circuit is known as a Johnson Counter, in honour of pioneering

computer scientist and UCLA professor, Dr. Robert Royce Johnson.
• An n-bit counter of this type generates a counting sequence of

length 2n.
• For example, a four-bit counter produces the sequence 0000, 1000,

1100, 1110, 1111, 0111, 0011, 0001, 0000, and so on.
• Note that in this sequence, only a single bit has a different value for

two consecutive codes.
• To initialize the operation of the Johnson counter, it is necessary to

reset all flip-flops.
• Observe that neither the Johnson nor the Ring Counter will generate

the desired counting sequence if not initialized properly.

06-11-2020

32

Using Verilog Constructs for Storage
Elements

• A simple way of specifying a storage element
is by using if-else statement to describe the
desired behavior responding to changes in the
levels of data and clock inputs.

• Consider the always block,

always @(Control, B)

if (Control)

A= B;

4-bit Johnson Counter

06-11-2020

33

• where A is a variable of reg type.

• This code specifies that the value of A should
be made equal to value of B when Control = 1.

• But the statement does not indicate an action
that should occur when Control = 0.

• In the absence of an assigned value, the
Verilog compiler assumes that the value of A
caused by the if statement must be
maintained when Control is not equal to 1.

• This notion of implied memory is realized by
instantiating a latch in the circuit.

06-11-2020

34

• An always construct is used to define a circuit
that responds to changes in the signals that
appear in the sensitivity list.

• The always blocks are sensitive to the levels of
signals, it is also possible to specify that a
response should take place only at a particular
edge of a signal.

• The desired edge is specified by using the
Verilog keywords posedge and negedge,
which are used to implement edge-triggered
circuits.

• The code defines a module named D_latch,

which has inputs D and Clk and the output Q.

• The if clause defines that the Q output must take
the value of D when Clk = 1.

• Since no else clause is given, a latch will be
synthesized to maintain value of Q when Clk=0.

• Therefore, the code describes a gated D latch.

• The sensitivity list includes Clk and D because
both of these signals can cause a change in the
value of the Q output.

06-11-2020

35

• It defines a module named flipflop, which is a
positive-edge-triggered D flip-flop.

• The sensitivity list contains only the clock
signal because it is the only signal that can
cause a change in the Q output.

• The keyword posedge specifies that a change
may occur only on the positive edge of Clock.

• At this time output Q is set to value of input D.

• Since posedge appears in sensitivity list, Q will
be implemented as the output of a flip-flop.

06-11-2020

36

06-11-2020

37

• Using non-blocking assignments.

• In the two statements

• Q1 <= D;

• Q2 <= Q1;

• The variables Q1 and Q2 have some value at
the start of evaluating the always block, and

• Then they change to a new value concurrently
at the end of the always block.

• This code generates a cascaded connection
between flip-flops, which implements the shift
register.

06-11-2020

38

ASYNCHRONOUS CLEAR

06-11-2020

39

SYNCHRONOUS CLEAR

• This is a module that defines a D flip-flop with

an asynchronous active-low reset (clear)
input.

• When Resetn, the reset input, is equal to 0,
the flip-flop’s Q output is set to 0.

• Note that the sensitivity list specifies the
negative edge of Resetn as an event trigger
along with the positive edge of the clock.

• It’s not possible to omit the keyword negedge
because the sensitivity list cannot have both
edge-triggered and level sensitive signals.

06-11-2020

40

AN N-BIT REGISTER

• Since registers of different sizes are often
needed in logic circuits, it is useful to define a
register module for which the number of flip-
flops can be easily changed.

• The code for an n-bit register is given.

• The parameter n specifies the number of flip-
flops in the register.

• By changing this parameter, the code can
represent a register of any size.

• This shows a D flip-flop with a synchronous

reset input.

• In this case the reset signal is acted upon only
when a positive clock edge arrives.

• This code generates the circuit which has an
AND gate connected to the flip-flop’s D input.

06-11-2020

41

A FOUR-BIT SHIFT REGISTER
• Verilog code for four-bit parallel-access shift register.

• Write hierarchical code that uses four sub circuits.

• Each sub circuit consists of a D flip-flop with a 2-to-1
multiplexer connected to the D input.

• The module named muxdff, which represents this sub circuit.

• The two data inputs are D0 and D1, and they are selected
using the Sel input.

• The if-else statement specifies that on the positive clock edge
if Sel = 0, then Q is assigned the value of D0; otherwise, Q is
assigned the value of D1.

• An alternative way of defining the same circuit is using the
conditional assignment statement specifies a 2-to-1
multiplexer with the output D, which is then connected to the
flip-flop in the always block.

06-11-2020

42

• The code defines the four-bit shift register.

• The module Stage3 instantiates the leftmost
flip-flop, which has the output Q3, and the
module Stage0 instantiates the right-most flip-
flop, Q0.

• When L = 1, the register is loaded in parallel
from the R input; and when L = 0, shifting
takes place in the left to right direction.

• Serial data is shifted into the most significant

• bit, Q3, from the w input.

06-11-2020

43

06-11-2020

44

06-11-2020

45

UP-COUNTER

• This is a a four-bit up-counter with a reset
input, Resetn, and an enable input, E.

• The outputs of the flip-flops in the counter are
represented by the vector named Q.

• The if statement specifies an asynchronous
reset of the counter if Resetn = 0.

• The else if clause specifies that if E = 1 the
count is incremented on the positive clock
edge.

AN N-BIT SHIFT REGISTER

• This is the code that can be used to represent
shift registers of any size.

• The parameter n, which has the default value
16, sets the number of flip-flops.

• First, R and Q are defined in terms of n.

• Second, the else clause that describes the
shifting operation is generalized to work for
any number of flip-flops by using a for loop.

06-11-2020

46

11-11-2020

1

BASIC OPERATIONAL
CHARACTERISTICS AND PARAMETERS
• Operational properties include voltage levels, noise immunity,

power dissipation, fan-out, and propagation delay time.
• DC Supply Voltage
•

•

•

•

•

The nominal value of the dc supply voltage for TTL(Transistor-
Transistor Logic) devices is +5 V.
TTL is also designated T2L.
CMOS (Complementary Metal-Oxide Semiconductor) devices are
available in different supply voltage categories: +5 V, 3.3 V, 2.5 V
and 1.2 V.
Although omitted from logic diagrams for simplicity, the dc supply
voltage is connected to the Vn pin of an IC package, and ground is
connected to the GND pin.
Both voltage and ground are distributed internally to all elements
within the package, as illustrated as shown below for a 14-pin
package.

Logic Families and its

Characteristics

ECT 203 Module V

11-11-2020

2

CMOS Logic Levels

• There are 4 different logic-level specifications: VIL VIH VOL and

VOH .

• For CMOS circuits, the ranges of input voltages (VIL) that can
represent a valid LOW (logic 0) are from 0V to 1 .5 V for the 5 V
logic and 0 V to 0.8 V for the 3.3 V logic.

• The ranges of input voltages (VIH) that can represent a valid HIGH
(Logic 1) are from 3.5 V to 5V for the 5V logic and 2 V to 3.3V for
the 3.3V logic.

• The ranges of values from 1.5V to 3.5 V for 5V logic and 0.8 V to

•

2 V for 3.3 V logic are regions of unpredictable performance, and
values in these ranges are unallowed.
When an input voltage is in one of these ranges, it can be

interpreted as either a HIGH or a LOW by the logic circuit.
• Therefore, CMOS gates cannot be operated reliably when the input

voltages are in these unallowed ranges.

Example of Vcc and ground in an IC package. Other pin
connections are omitted for simplicity.

11-11-2020

3

Input and output logic levels for CMOS operating at +5V

CMOS Output Voltages

• The ranges of CMOS output voltages VOL and
VOH for both 5V and 3.3V logic are shown.

• Notice that the minimum HIGH output voltage
VOH(min) is greater than the minimum HIGH
input voltage VIH(min).

• Also, notice that the maximum LOW output
voltage VOL(max), is less than the maximum
LOW input voltage VIL(max).

11-11-2020

4

TTL Logic Levels

• The input and output logic levels for TTL are in
terms of 4 different logic level specifications.

• They are: VIL, VIH, VOL, and VOH .

Input and output logic levels for TTL

Input and output logic levels for CMOS operating at +3.3 V

11-11-2020

5

• In order not to be adversely affected by noise, a
logic circuit must have a certain amount of noise
immunity.

• This is the ability to tolerate a certain amount of
unwanted voltage fluctuation on its inputs
without changing its output state.

• For example, if noise voltage causes the input of a
5 V CMOS gate to drop below 3.5V in the HIGH
state, the input is in the unallowed region and
operation is unpredictable.

• Thus, the gate may interpret the fluctuation
below 3.5 V as a LOW level.

• Similarly, if noise causes a gate input to go above
1.5 V in the LOW state, an uncertain condition is
created.

Noise Immunity

• Noise is unwanted voltage that is induced in
electrical circuits and can present a threat to
the proper operation of the circuit.

• Wires and other conductors within a system
can pick up
electromagnetic

stray high-frequency
radiation from adjacent

conductors in which currents are changing
rapidly or from many other sources external to
the system.

• Also, power-line voltage fluctuation is a form
of low-frequency noise.

11-11-2020

6

Illustration of the effects of input noise on gate operation.

Illustration of the effects of input noise on gate operation.

11-11-2020

7

• The noise margin is expressed as a percentage
of Vcc.

• From equations. VNH is the difference
between the lowest possible HIGH output
from a driving gate (VOH(min)) and the lowest
possible HIGH input that the load gate can
tolerate (VIH(min)).

• Noise margin, VNL is the difference between
the maximum possible LOW input that a gate
can tolerate (VIL(max)) and the maximum
possible LOW output of the driving gate
(VOL(max)) .

Noise Margin

• A measure of a circuit's noise immunity is called
Noise Margin, expressed in Volts.

• There are two values of noise margin specified
for a given logic circuit: HIGH-level noise margin
(VNH) and LOW-level noise margin (VNL).

• These parameters are defined by the following
equations:

………………(1)

………………(2)

11-11-2020

8

EXAMPLE -1
Determine the High-level and LOW-level noise
margins for CMOS and for TTL using their logic
level voltage ranges.

Sol

Illustration of Noise Margin, values are for 5 V CMOS, but it applies to any logic family

11-11-2020

9

Power Dissipation

• A logic gate draws current from the dc supply
voltage source.

• When the gate is in the HIGH output state, an
amount of current designated by ICCH is drawn.

• And in the LOW output state, a different amount
of current ICCL is drawn.

11-11-2020

10

When a gate is pulsed, its output switches back and forth
between HIGH and LOW and the amount of supply current
varies between ICCH and ICCL .

The average power dissipation depends on the duty cycle and
is usually specified for a duty cycle of 50%.

When the duty cycle is 50%. the output is HIGH half the time
and LOW the other half.

The average supply current is,

………………(3)

The average power dissipation is,

………………(4)

Currents drawn from the dc source

As an example, if ICCH is specified as 1.5mA when Vcc

is 5 V and if the gate is in a static (non changing) HIGH
output state, the power dissipation PD of the gate is ,

11-11-2020

11

Homework!

1. A certain IC gate has an ICCH = 1.5µA and ICCL = 2.8
µA. Determine the average Power dissipation for 50%
duty cycle operation if Vcc is 5 V.

2.

EXAMPLE -2

A certain gate draws 2 µA when its output is
HIGH and 3.6 µA when its output is LOW. What
is its average power dissipation if Vcc is 5 V and

the gate is operated on a 50% duty cycle?
Sol

11-11-2020

12

Power-vs-frequency curve for TTL and CMOS.

Power dissipation TTL vs CMOS

• Power dissipation in a TTL circuit is essentially
constant over its range of operating
frequencies.

• Power dissipation in CMOS, however, is
frequency dependent.

• It is extremely low under static (dc) conditions
and increases as the frequency increases.

11-11-2020

13

• There are two propagation delay times specified

for logic gates:

• tPHL: The time between a designated point on the
input pulse and the corresponding point on the
output pulse when the output is changing from
HIGH to LOW.

• tPLH : The time between a designated point on the
input pulse and the corresponding point on the
output pulse when the output is changing from
LOW to HIGH.

• These propagation delay times are illustrated
below with the 50% points on the pulse edges
used as references.

Propagation Delay Time

• When a signal passes (propagates) through a
logic circuit, it always experiences a time
delay.

• A change in the output level always occurs a
short time, called the propagation delay time,
later than the change in the input level that
caused it.

11-11-2020

14

• The propagation delay time of a gate limits the
frequency at which it can be operated.

• The greater the propagation delay time, the
lower the maximum frequency.

• Thus, a higher speed circuit is one that has a
smaller propagation delay time.

• For example, a gate with a delay of 3 ns is
faster than one with a 10 ns delay.

11-11-2020

15

Loading and Fan-Out
• When the output of a logic gate is connected

to one or more inputs of other gates, a load
on the driving gate is created, as shown.

• There is a limit to the number of load gate
inputs that a given gate can drive.

• This limit is called the fan-out of the gate.

Loading a gate output
with gate inputs.

Speed-Power Product
• The speed-power product provides a basis for the

comparison of logic circuits when both
propagation delay time and power dissipation are
important considerations in the selection of the
type of logic to be used in a certain application.

• The lower the speed-power product, the better.
The unit of speed-power product is the pico-joule
(pJ).

• For ex, HCMOS has a speed-power product of
1.2 pJ at I00 kHz while LS TTL has a value of 22 pJ.

11-11-2020

16

Capacitive loading of a CMOS gate

CMOS Loading
• Loading in CMOS differs from that in TTL because

the type of transistors used in CMOS logic present
a predominantly capacitive load to driving gate.

• In this case, the limitations are the charging and
discharging times associated with the output
resistance of the driving gate and the input
capacitance of the load gates.

• When the output of the driving gate is HIGH, the
input capacitance of the load gate is charging
through the output resistance of the driving gate.

• When the output of the driving gate is LOW, the
capacitance is discharging.

11-11-2020

17

• When more load gate inputs are added to the
driving gate output, the total capacitance
increases because the input capacitances
effectively appear in parallel.

• This increase in capacitance increases the
charging and discharging limes, thus reducing
the maximum frequency at which the gate can
be operated.

• Therefore, the fan-out of a CMOS gate
depends on the frequency of operation.

• The fewer the load gate inputs, the greater
the maximum frequency.

17-11-2020

1

Basic illustration of current sourcing in logic gates

TTL Loading

• A TTL driving gate sources current to a load
gate input in the HIGH state(IIH) and sinks

current from the load gate in LOW state (IIL).

• Current sourcing and current sinking are
illustrated in simplified form.

• Where the resistors represent the internal
input and output resistance of the gate for the
two conditions.

17-11-2020

2

• As more load gates are connected to the driving gate, the
loading on the driving gate increases.

• The total source current increases with each load gate
input that is added, as illustrated.

• As this current increases, the internal voltage drop of the
driving gate increases, causing the output VOH to decrease.

• If an excessive number of load gate inputs are connected,
VOH drops below VOH(min) and the HIGH-level noise margin is
reduced thus compromising the circuit operation.

• Also, as the total source current increases, the power
dissipation of the driving gate increases.

Basic illustration of current sinking in logic gates

17-11-2020

3

• The fan-out is the max no: of load gate inputs that can
be connected without adversely affecting the specified
operational characteristics of the gate.

• For ex, low power Schottky (LS) TTL has a fan-out of 20
unit loads.

• One input of the same logic family as the driving gate is
called a unit load.

• The total sink current also increases with each load
gate input that is added, as shown.

• As this current increases, the internal voltage drop of
the driving gale increases. causing VOL increase.

• If an excessive number of loads are added VOL exceeds
VOL(max) and the LOW-level noise margin is reduced.

• In TTL the current-sinking capability (LOW output state)
is the limiting factor in determining the fan-out.

HIGH-state TTL loading

17-11-2020

4

Check your Understanding!

Low Stage TTL Loading

17-11-2020

5

A standard TTL inverter circuit

TTL Inverter

• The logic function of an inverter or any type of
gate is always the same, regardless of the type of
circuit technology that is used.

• A standard TTL circuit for an inverter is studied.

• In this diagram Q1 is the input coupling transistor,
and D, is the input clamp diode.

• Transistor Q2 is called a phase splitter, and the
combination of Q3 and Q4 forms the output
circuit often referred to as a totem-pole
arrangement.

17-11-2020

6

Operation

• A LOW provides a path to ground for the current.

• There is no current into base of Q2 so it is off.

• The collector of Q2 is HIGH, thus turning Q4 ON.

• A saturated Q4 provides a low-resistance path
from Vcc to the output.

• There is a HIGH on the output for a LOW on the
input.

• At the same time, the emitter of Q2 is at ground
potential, keeping Q3 off.

Operation
• When the input is a HIGH, the base-emitter junction of Q1

is reverse biased, and the base-collector junction is
forward biased.

• This condition permits current through R1 and the base-
collector junction of Q1, into the base of Q2, thus driving Q2
into saturation.

• As a result Q3 is turned on by Q2 and its collector voltage,
which is the output, is near ground potential.

• We therefore have a LOW output for a HIGH input.
• At the same time, the col lector of Q2 is at a sufficiently low

voltage level to keep Q4 off.
• When the input is LOW the base-emitter junction of Q1 is

forward biased, and the base collector junction is reverse
biased.

• There is current through R1 and the base-emitter junction
of Q1 to the LOW input.

17-11-2020

7

• The operation of the TTL inverter for the two

input states is illustrated in diagram.

• In the circuit in part (a), the base of Q1 is 2. 1 V
above ground, so Q2 and Q3 are ON.

• In the circuit in part (b) the base of Q1 is
about 0.7 V above ground—not enough to
turn Q2 and Q3 on.

• Diode D1 in the TTL circuit prevents negative
spikes of voltage on the input from damaging Q1.

• Diode D2 ensures that Q4, will turn off when Q2 is
on (HIGH input).

• In this condition the collector voltage of Q2 is
equal to the base-to-emitter voltage VBE of Q3

plus the collector-to-emitter voltage VCE of Q2.
• Diode D2 provides an additional VBE equivalent

drop in series with the base-emitter junction of
Q4 to ensure its turn-off when Q2 is on.

17-11-2020

8

TTL NAND Gate

Operation of a TTL inverter

17-11-2020

9

Q1 is replaced by the diode arrangement.
A LOW on either input A or input H forward-biases the
respective diode and reverse-biases D3 (Q1 base
collector junction).

This action keeps Q2 off and results in a HIGH output.
A LOW on both inputs will do the same thing.
A HIGH on both inputs reverse-biases both input
diodes and forward-biases D3 (Q1 base collector
junction).

This action turns Q2 on and results in a LOW output.
The operation is that of the NAND function.
The output is LOW only if all inputs are HIGH.

A 2-input TTL NAND gate is shown.
Basically, it is the same as the inverter circuit except for
the additional input emitter of Q1.
In TTL technology multiple-emitter transistors are used
for the input devices.
These multiple-emitter transistors can be compared to
the diode arrangement, as shown.

Diode equivalent of a TTL multiple-emitter transistor.

17-11-2020

10

CMOS CIRCUITS -The MOSFET

• Metal-oxide semiconductor field-effect
transistors (MOSFETs) are the active switching
elements in CMOS circuits.

• These devices differ greatly in construction
and internal operation from bipolar junction
transistors used in TTL circuits, but the
switching action is basically the same.

• They function ideally as open or closed
switches, depending on the input.

17-11-2020

11

The MOSFET

• The three terminals of a MOSFET are gate, drain,
and source.

• When the gate voltage of an n-channel MOSFET is
more positive than the source, the MOSFET is ON
(Saturation), and there is ideally, a closed switch
between the drain and the source.

• When the gate-to-source voltage is zero, the
MOSFET is OFF (cutoff), and there is ideally, an
open switch between the drain and the source.

17-11-2020

12

Simplified MOSFET symbol.

17-11-2020

13

• Complementary MOS (CMOS) logic uses the
MOSFET in complementary pairs as its basic
element.

• A complementary pair uses both n -channel and
p-channel enhancement MOSFETs.

• When a HIGH is applied lo the input, the p-
channel MOSFET Q1 is off and the n-channel
MOSFET Q2 is on.

• This condition connects the output to ground
through the on resistance of Q2, resulting in a
LOW output.

• When a LOW is applied to the input, Q1 is on and
Q2 is off.

• This condition connects the output to +VDD (dc
supply voltage) through the on resistance of Q1
resulting in a HIGH output.

CMOS Inverter

17-11-2020

14

CMOS NAND Gate

Operation of a CMOS inverter

17-11-2020

15

When input A is HIGH and input B is LOW Q1and Q4 are
off and Q2 and Q3 are on.

The output is pulled HIGH through the low on resistance
of Q2.

Finally, when both inputs are HIGH Q1 and Q2 are off
and Q3 and Q4 are on.

In this case, the output is pulled LOW through the on
resistance of Q3 and Q4 in series to ground.

CMOS NAND
• The operation of a CMOS NAND gate is as

follows:

When both inputs are LOW Q1 and Q2 are on and Q3
and Q4 are off.

The output is pulled HIGH through the on resistance
of Q1 and Q2 in parallel.

When input A is LOW and input B is HIGH Q1 and Q4
are on and Q2 and Q3, are off.
The output is pulled HIGH through the low on
resistance of Q1.

17-11-2020

16

The operation of a CMOS NOR gate is as follows:

When both inputs are LOW Q1 and Q2 are on and
Q3 and Q4 are off.

As a result, the output is pulled HIGH through the on
resistance of Q1 and Q2 in series.

When input A is LOW and input B is HIGH Q1 and Q4
are on and Q2 and Q3 are off.

The output is pulled LOW through the low on
resistance of Q4 to ground.

CMOS NOR Gate

17-11-2020

17

When input A is HIGH and input B is LOW Q1 and Q4
are off and Q2 and Q3 are on.

The output is pulled LOW through the on resistance of
Q3 to ground.

When both inputs are HIGH Q1 and Q4 are off , and
Q2 and Q3 are on.

The output is pulled LOW through the on resistance of
Q3 and Q4 in parallel lo ground.

22-11-2020

1

OR/NOR Gate

• An ECL OR/NOR gate is considered.

• The emitter-follower outputs provide the OR
logic function and its NOR complement, as
indicated.

EMITTER-COUPLED LOGIC (ECL)
CIRCUITS

• Emitter-coupled logic, like TTI is a bipolar
technology.

• The typical ECL circuit consists of a differential
amplifier input circuit, a bias circuit, and
emitter-follower outputs.

• ECL is much faster than TTL because the
transistors do not operate in saturation and is
used in more specialized high-speed
applications.

22-11-2020

2

22-11-2020

3

Noise Margin

• The noise margin of a gate is the measure of
its immunity to undesired voltage fluctuations
(noise).

• Typical ECL circuits have noise margins from
about 0.2V to 0.25 V.

• These are less than for TTL and make ECL less
suitable in high-noise environments.

Operation

• Due to the low output impedance of the emitter-
follower and the high input impedance of the
differential amplifier input, high fan-out operation is
possible.

• In this type of circuit. saturation is not possible. The
lack of saturation results in higher power consumption
and limited voltage swing (less than IV).

• But it permits high-frequency switching.
• The Vcc pin is normally connected to ground, and the

VEE pin is connected to -5.2 V from the power supply
for best operation.

• Notice that the output varies from a LOW level of 1.75
V to a HIGH level of -0.9 V with respect to ground.

• In positive logic a 1 is the HIGH level (less negative),
and a 0 is the LOW level (more negative).

22-11-2020

4

Comparison of ECL with TTL and CMOS

F- Fast. AHC- Advanced High Speed CMOS

